что лучше для кулера алюминий или медь
Шаг пятый. Медь vs алюминий
Шаг пятый.
Предыдущие шажки можно увидеть здесь.
Достался мне тут недавно бракованный кулер Titan D5TB/Cu35. Все было нормально, но основание не отшлифовано совсем, медный пятак имел частые борозды видимо от отрезного станка глубиной примерно 0,5 мм.
Решено было – отполировать и поставить.
Эффект превзошел все ожидания. Температура, под нагрузкой, упала до 47 градусов.
Как это возможно? Алюминий эффективней меди?
Теплопроводность:
Алюминий 180-200 Вт/м*К
Медь обычная 300-320 Вт/м*К
Плотность:
Рал=2700 кг/м3
Рмед=8940 кг/м3, где Р-плотность
Шаг пятый.
Предыдущие шажки можно увидеть здесь.
Достался мне тут недавно бракованный кулер Titan D5TB/Cu35. Все было нормально, но основание не отшлифовано совсем, медный пятак имел частые борозды видимо от отрезного станка глубиной примерно 0,5 мм.
Решено было – отполировать и поставить.
Эффект превзошел все ожидания. Температура, под нагрузкой, упала до 47 градусов.
Как это возможно? Алюминий эффективней меди?
Теплопроводность:
Алюминий 180-200 Вт/м*К
Медь обычная 300-320 Вт/м*К
Плотность:
Рал=2700 кг/м3
Рмед=8940 кг/м3, где Р-плотность
видим, что:
· плотность меди выше, чем у алюминия примерно в 3,31 раза
· теплопроводность меди выше, чем у алюминия примерно в 1,66-1,75 раза
· теплоёмкость медного радиатора меньше, чем у алюминиевого примерно в 2,28 раза, при равной массе.
Таким образом, если радиаторы одинаковые по размерам и форме, то выполненный из меди будет в 3,31 раза тяжелее, его теплоемкость будет примерно в 1.44 раз больше чем у алюминиевого. Следовательно, при одинаковой нагрузке медный радиатор нагреется в 1.44 раза меньше. При большей разнице температур между процессорным ядром и радиатором теплообмен проходит эффективнее, следовательно, медный радиатор лучше.
Но на практике, я заменил медный радиатор на алюминиевый и выиграл. Почему?
В данном случае я заменил небольшой, но тяжелый радиатор от Thermaltake Volcano 10, с частыми тонкими ребрами, на вдвое больший радиатор от Titan D5TB/Cu35 с достаточно редкими и толстыми ребрами. Масса радиаторов примерно равна, поэтому теплоемкость алюминиевого радиатора будет больше. Следовательно, нагреваться он будет дольше. Кроме того, сопротивление воздушному потоку меньше из-за большей ширины каналов. Следовательно, через алюминиевый радиатор проходит большее количество воздуха, и он (воздух) забирает больше тепла. Тепловой баланс устанавливается на низшей отметке температуры, так как, во-первых, за единицу времени больше тепла отдается в атмосферу вследствие большего количества проходящего воздуха, а площадь теплообмена у обоих радиаторов примерно равна. А во-вторых, сам радиатор нагревается медленнее вследствие большей теплоемкости, поэтому для достижения равной с медным радиатором температуры алюминиевому требуется больше времени, что усугубляет первое положение. Кроме того, возможно в радиаторе от Thermaltake Volcano 10 образовывались не продуваемые зоны, в которых застаивался теплый воздух.
Основное преимущество меди, большая теплопроводность, в данном случае существенного влияния не оказывает, ввиду слабого воздушного потока вследствие чего и алюминиевый и медный радиаторы успевают равномерно распределить тепло по поверхности своих ребер и, следовательно, единица площади ребер обоих радиаторов отдает воздуху примерно равное количество тепла.
Все, что здесь написано, отражает мою личную точку зрения и не более. Я не старался придерживаться классической терминологии и возможно применил неверные определения, за что прошу строго меня не судить.
Конструктивная критика принимается здесь.
Продолжая тему, начатую в записе «Охлаждаем летом и зимой», хотелось бы обратить внимание на типы радиаторов для процессоров. Данная проблема больше всего актуальна для процессоров компании AMD, ведь у них тепловыделение кристалла превышает аналогичное для их визави компании Intel на 20%.
Кроме основы радиатора, для кулеров важно и количество оборотов вентилятора основы радиаторов, сделанные из разных материалов, имеют разные показатели. Сейчас количество оборотов вентилятора кулера в пределах 2000-3000 об/мин. Такое значение оборотов хорошо вписывается в рамки частотной сетки процессоров до 2,2ГГц. А если выше? А если не хочется слушать, как шумит процессорный кулер и так далее? На все эти вопросы отвечают компании-производители процессорных кулеров. Из множества т.
Продолжая тему, начатую в записе «Охлаждаем летом и зимой», хотелось бы обратить внимание на типы радиаторов для процессоров. Данная проблема больше всего актуальна для процессоров компании AMD, ведь у них тепловыделение кристалла превышает аналогичное для их визави компании Intel на 20%.
В данном эксперименте использовались кулер: MEGTRON S754-07B832A.
Рассмотрим технические параметры S754-07B832A:
Более дешевые варианты «охладителей» от компании MEGTRON (модели S754-07B832A, S754-07B832RF) имели одинаковые количество оборотов вентилятора 3000, но отличались основной радиатора. Модель S754-07B832RF имеет медное основание радиатора, а S754-07B832A полностью алюминиевый радиатор.
Как я уже говорил, вентилятор этого кулера не сильно шумит. При этом он может быть установлен на все существующие процессоры под Socket 462/754/939/940 с частотами Sempron до 3600+/Athlon64 до 3600+ и выше. Крепление этого кулера к Socket 462 отсутствует.
Дорабатываем радиаторы
Габариты радиатора:
Взял зажим от D9TB:
Как показано на рисунке см. выше, толщина 9.9mm у S754-07B832A, а 6.1mm у D9TB. Необходимо изогнуть зажим.
В обратном порядке:
Методика и аппаратное обеспечение эксперимента
Для проведения сравнения кулеров с алюминиевой и медной основной применялся стенд следующей конфигурации:
Для тестирования использовалась операционная система Windows 2000 Pro SP4. Для определения температуры процессора использовался встроенный в материнскую плату датчик, а для вывода его результатов в удобочитаемом виде применялась утилита PC Probe v2.21.08 из комплекта поставки материнской платы. Полученные температуры представлены на рисунке см. ниже.
Сброс температуры на 5 градусов в простое после прогрева S754-07B832A осуществил за 4 мин., D9TB почти за 6,2 мин.
Оценка:
Плюсы:
* Доступная цена;
* Высокий запас разгона;
* Никакого шума, просто шелест.
Минусы:
* Мешают сокет и конденсаторы на A7N8X-E Deluxe;
* Отсутствует зажим к Socket 462.
Охлаждение: самые распространенные мифы
Идея этого текста родилась у меня в голове после анализа многочисленных писем читателей, а также после общения с читателями же на Комтеке. Здесь мы разберем самые распространенные ошибки, которые (с активной помощью другой компетентной публики) допускает сферический пользователь в вакууме, когда начинает задумываться об эффективности системы охлаждения своего ПК.
Миф первый: чем выше обороты кулера, тем он эффективнее
Грамотная конструкция ребер.
Иными словами, не всегда имеет смысл гнаться за оборотами. Да и уши свои тоже стоит пожалеть.
Подробнее о ламинарных и турбулентных потоках можно прочесть в нашем материале о проблемах охлаждения, поднимавшихся на IDF в Москве.
Миф второй: шлифовка основания увеличивает эффективность охлаждения
Строго говоря, это не миф. Хорошая и качественная шлифовка действительно улучшит охлаждение, убрав царапины и прочие дефекты, уменьшающие площадь соприкосновения процессора и основания. Однако шлифовать основание надо правильно, иначе вместо улучшения охлаждения мы получим существенное падение эффективности кулера.
Как поступает большинство пользователей, услышавших о полировке основания? Да очень просто — пользователь берет крупную шкурку, и начинает пальцами или каким-то твердым предметом возить ее по основанию. Затем наждачка меняется на более мелкую, до тех пор, пока пользователю не покажется, что уже достаточно. Такой шлифовкой мы действительно уберем мелкие царапины, однако наделаем на основании много гораздо более крупных дефектов. Дело в том, что сила нажатия на инструмент не всегда одинакова, вернее, всегда неодинакова, да и время, потраченное на каждый квадратный сантиметр, различается, и в результате какой-то участок поверхности мы стачиваем сильнее, а какой-то совсем чуть-чуть. Если после такой шлифовки посмотреть на основание вооруженным глазом, то можно увидеть, что оно стало «волнистым».
Коэффициент теплопроводности любой термопасты много ниже оного у любого металла. А теперь подумайте, что сильнее ударит по эффективности охлаждения: царапина глубиной 0,1 мм и общей площадью 1 кв. мм, залитая термопастой, или яма такой же глубины, но площадью уже 1 кв. см? Правильно.
Этому основанию определенно нужна шлифовка.
Так что шлифовать основание надо, но, во-первых, только в самых тяжелых случаях, когда дефектов много, и они легко заметны, а во-вторых, так, чтобы таких «ям» не возникало, то есть или с помощью специальной машинки, или просто используя ровную поверхность, равномерно покрытую наждачкой. Половинный вариант — набор наждачек разной степени крупности — не принесет вам ничего хорошего.
Миф третий: медный сердечник всегда лучше сплошного алюминиевого основания
В большинстве случаев это действительно так — чем меднее основание, тем эффективнее кулер. Однако, есть варианты, когда сплошное алюминиевое основание намного эффективнее врезанного в него медного сердечника.
Все дело в том, что место соединения двух металлов — алюминия и меди — обладает некоторым термическим сопротивлением. И оно тем больше, чем хуже качество (то есть площадь и плотность) этого соединения. Вопрос о качестве, конечно же, не стоит, когда сердечник толстый, и врезан по всей толщине в алюминиевое основание или оправу с большим натягом. А вот в случае, когда сердечник, например, легко прокручивается в основании, или, несмотря на общую массивность сердечника, площадь соединения очень невелика, сопротивление границы раздела металлов будет очень велико. Настолько, что лучше бы на месте меди было просто сплошное алюминиевое основание — все преимущества меди с ее высоким коэффициентом теплопроводности «съедаются» местом контакта.
Вариант плохого соединения меди и алюминия.
К счастью, таких кулеров с каждым днем становится меньше. И вообще, нынче у произвордителей в моде кулеры с полностью медным основанием, которое будет всегда эффективнее, чем алюминиевое, при условии, конечно, качественного с точки зрения теплообмена крепления к нему ребер.
Миф четвертый: штатная термопаста/термонашлепка заслуживает лишь мгновенной замены ее на КПТ-8
Это далеко не всегда так. Безусловно, хорошая (не «подпольная») КПТ-8 — термопаста очень достойная, и она действительно лучше многих зарубежных паст, а уж прилагаемые к кулерам пасты вообще через одну курят в коридоре. Однако, если к вашему кулеру, скажем, Titan прилагается шприц с серебристой термопастой, не спешите бежать за КПТ-8. Прилагаемая термопаста ничем не хуже КПТ-8, по крайней мере, при тех значениях тепловых потоков, которые мы имеем в стандартном или даже сильно разогнанном ПК. Ну будет температура процессора отличаться от возможной на один градус — вы что, умрете от этого? А процессор? Тоже нет. Так что в подавляющем большинстве случаев в замене штатной термопасты на КПТ-8, АлСил-3 или даже более дорогую пасту «с серебром» нет никакого смысла.
Термопасты и термопрокладки.
Разумеется, если вы купили кулер, о месте рождения которого неизвестно даже ему самому, и в комплект поставки входил невзрачный пакетик с надписью «Silicone compound», вид которого вызывает не доверие, а прямо противоположные эмоции, то термопасту лучше заменить.
Отдельный разговор — термонашлепки. Они бывают разные — в виде очень густых паст, которые по идее должны плавиться при нагревании процессора, и в жидкой фазе заполнять все неровности, или в виде кусочка фольги, наклеенного на основание. Термонашлепку первого типа лучше удалить, и даже не потому, что она неэффективна (иногда ее эффективность довольно высока) — просто при последующем снятии кулера с холодного процессора вы можете оторвать вместе с ним еще и часть кристалла, что вряд ли входит в ваш план по продаже старого камня и замене его на новый.
На старом боксовом кулере от Intel, которым оснащаются Pentium 4 до 3,06 Ггц, на основании наклеен кусочек чего-то черного, напоминающего фольгу. Каких только мнений я не встречал! Говорили даже, что это — просто защитная накладка, а вот под ней-то скрывается настоящая термопаста. Это не так — фольга, покрытая тонким слоем высокоориентированного графита, есть сам интерфейс, а не защита термоинтерфейса, как думают очень многие продавцы и пользователи. Эффективность ее, к сожалению, оставляет желать лучшего (и даже Intel это косвенно признала, укомплектовав следующий кулер для более мощных процессоров обычной термопастой), однако если вы не собираетесь разгонять процессор, сойдет и она. Ничего страшного в ней нет, и свои функции эта фольга выполняет.
Термопрокладка из фольги с высокоориентированным графитом.
То, чем ее заменили.
В рамках этого мифа, пожалуй, стоит развеять еще один, появившийся на свет с легкой руки некоторых сетевых журналистов, и распространившийся поэтому достаточно быстро и хорошо. Все серебристые пасты «с добавлением алюминия или серебра», которые прилагаются к кулерам или продаются на соответствующих рынках, а также «пасты с добавлением цинка», к коим, в частности, относится и КПТ-8, не содержат этих металлов в чистом виде. В них используются оксиды или нитриды соответствующих металлов, которые, в отличие от металлов, являются изоляторами, а не проводниками электрического тока. Термопасты с добавлением чистого серебра существуют, однако ни один производитель в здравом уме не будет комплектовать ей свои кулеры — во-первых, потому, что дорого, а во-вторых, потому что опасно. Да и купить такую пасту достаточно сложно.
Следовательно, пробой нам не грозит, даже если мы покроем «алюминиевой» пастой весь Athlon с его мостиками.
Подробнее о термопастах и термонашлепках можно прочесть в нашем материале (см. www.ferra.ru/online/supply/13736).
Миф пятый: Чем больше в корпусе кулеров, тем лучше охлаждение
Я, будучи в здравом уме и трезвой памяти, заявляю, что прекрасно осознаю все то, что я тут пишу, и понимаю, что буду заплеван за нижеследующее многими моддерами, превратившими свои корпуса в подобие многомоторных винтовых самолетов. Однако все же скажу — бездумная установка кулеров в корпус лишь снижает эффективность охлаждения внутреннего пространства.
Дело в том, что большинство хороших (Обратите внимание — именно хороших! Плохие корпуса дорабатывать нет никакого смысла, горбатого только могила исправит) корпусов допускают установку дополнительных вентиляторов именно в тех местах, в которых допускают, не просто так, а потому, что так надо. Иными словами, если места под вентиляторы есть на передней и задней панели — так это не потому, что на других панелях места не было, а потому, что именно там вентиляторы и должны быть расположены для достижения наибольшей эффективности охлаждения. Разумеется, небольшие подвижки возможны, равно как возможно оснащение этих панелей вентиляторами сверх нормы. Однако большинство пользователей в погоне за прохладой поступает, как правило, иначе — режет блоухоллы там, где это вообще возможно, то есть чаще всего на боковой и верхней стенке. Причем ориентируют эти вентиляторы чаще всего на внос воздуха внутрь корпуса. И этим вносят в задумку производителя существенные коррективы, выражающиеся в дополнительных потоках воздуха, меняющих всю тепловую картину, и заставляющих воздух выходить не там, где надо, и проделывать совсем не тот путь, который нужно.
Так видит идеальный корпус фирма Intel.
Запомните — воздух должен поступать в корпус через переднюю его часть, а выходить — через заднюю. Кроме того, число входящих и исходящих вентиляторов, а вернее, их суммарный расход, должно быть хотя бы сопоставимо, иначе получится не картина, а непонятно что — воздух будет выходить совсем не там, где нужно, и совсем не так, как нужно. Боковые вентиляторы допустимы, но только в случае, когда вы понимаете, зачем это делаете. Для того, чтобы понимание наступило, полезно иногда нарисовать на бумаге корпус и все потоки внутри него.
По той же причине нежелательно иметь большое число вентиляционных отверстий в разных частях корпуса. Эти отверстия нужны только тогда, когда основной упор в охлаждении корпуса делается не на вынужденную, а на естественную конвекцию воздуха, то есть вентиляторов в корпусе мало, или их нет совсем. В случае же, когда расходы вентиляторов впереди и сзади сопоставимы и достаточно велики, вентиляционные отверстия не полезны, и даже вредны. Достаточно одного хорошего воздухозаборника перед каждым вентилятором. Кстати, эти воздухозаборники полезно закрывать фильтрами — реже придется пылесосить корпус.
Даже если вы завесите все передние и задние стенки вентиляторами, температура внутри корпуса все равно не упадет ниже температуры окружающей среды, а вот шум и нагрузка на блок питания увеличатся очень сильно. Существует некая критическая масса вентиляторов, выше которой сколько их число не увеличивай, температуры все равно останутся такими же, или опустятся, но на столь малую величину, что вы этого даже не заметите. Для разных корпусов и конфигураций эта масса будет разной, но обычно критическое число вентиляторов невелико, и уж точно намного меньше, чем многие себе представляют — скажем, четыре или пять.
Так что не боритесь с ветряными мельницами, и не делайте ветряную мельницу из своего корпуса. Вместо этого улучшите охлаждение тех точек, которые в этом действительно нуждаются. Например, поставьте вентилятор напротив жесткого диска.
Миф шестой: современные жесткие диски не нуждаются в специальном охлаждении
Миф активно существует благодаря продавцам ПК, не особенно утруждающих себя охлаждением жестких дисков в своих компьютерах. Однако, верен он с точностью до наоборот — как раз современные жесткие диски в этом охлаждении нуждаются намного больше своих древних собратьев. Связано это с тем, что плотность размещения элементов на схемах винчестеров, а также транзисторов в микросхемах, в последние годы существенно возросла, а вот токи, необходимые винчестеру, остались такими же. Соответственно, современный управляющий чип винчестера уже не в состоянии рассеять все выделяемое им тепло самостоятельно просто в силу очень маленькой площади корпуса. Диапазон же температур, в котором винчестер нормально работает, и его срок службы при этом не снижается, достаточно узок. Если в случае с процессором снижение срока службы с десяти лет до пяти не очень критично, то для винчестера этот же параметр намного важнее. Между тем, охлаждению процессора уделяется огромное количество внимания, а вот охлаждению микросхем контроллера винчестера — вообще не уделяется.
Оснащение винчестера своим вентилятором сделает проблему менее острой, хотя справедливости ради надо сказать, что вряд ли снимет ее совсем. Но это уже тема отдельной статьи.
Жидкий металл в качестве термоинтерфейса, все за и против
В последнее время все большую популярность приобретает применение в компьютерной технике в качестве термоинтерфейса жидкого металла.
реклама
Но давайте разберемся, все ли так хорошо, как нас убеждает производитель этого «волшебного зелья» и его фанаты.
Да! Несомненно у жидкого металла есть большой плюс, это его теплопроводность, она выше, чем у хорошей термопасты в 7-10 раз. И на практике применение жидкого металла позволяет в некоторых случаях снизить температуру чипа до 20%.
реклама
Для наглядности показатели теплопроводности для термопаст и жидкого металла привел в таблице.
Но на этом все. Дальше одно разочарование. Все по порядку.
Жидкий металл состоит (является сплавом) из трех основных элементов: галлий-индий-олово (62, 25 и 13% соответственно), с некоторыми небольшими дополнительными присадками в зависимости от «волшебных рецептов» разных производителей с температурой плавления в районе 5 °С.
реклама
Взаимодействие с алюминием даже не будем рассматривать, так как сам производитель категорически запрещает применять жидкий металл на алюминиевых поверхностях, к слову алюминий при взаимодействии с жидким металлом разрушается прямо на глазах. А рассмотрим взаимодействие с медью, с которым производитель как раз и рекомендует использовать жидкий металл, и поверхностью кристаллов чипов.
Для начала взглянем на поверхность медного радиатора после его интенсивного использования с жидким металлом в течении полугода.
Жидкий металл перешел в твердое состояние, снятие его было произведено с усилием, так как он «прикипел» к поверхности кристалла.
реклама
Так что же произошло с жидким металлом?
Все таки разрушающая химическая реакция с медью происходит, пусть и достаточно медленно, по причине которой значительно снижается теплопроводность этого термоинтерфейса и увеличиваются температуры чипов.
Химики так же говорят, что устранить подобное явление поможет никелирование меди, но не все медные радиаторы имеют никелированную поверхность.
Теперь разберемся как влияет жидкий металл на поверхность кристаллов чипов. На фото представлено фото поверхности кристалла процессора, который несколько лет эксплуатировался с жидким металлом.
Как видно и здесь происходят химические реакции, которые постепенно разрушают поверхность кристалла чипа.
Кстати разрушающее воздействие жидкого металла касается еще и паяных соединений, вступив в контакт с припоем, он сделает его хрупким, а пайку ненадежной, и в какой-то момент это сработает.
Представьте такую ситуацию: вы в ноутбуке заменили термоинтерфейс на жидкий металл, выдавили его немного больше, чем нужно было. При установке системы охлаждения излишек выдавился из-под процессора, или графического чипа, и волшебная капелька зависла в ожидании какого ни будь резкого толчка или небольшого падения (с высоты 2 см.) вашего ноутбука. А такие случаи имели место быть. И здесь начинается путешествие это волшебной капли по вашему ноутбуку. И что случится раньше? Замкнет SMD компоненты на подложке процессора, замкнет, какие-либо другие компоненты, или же просто прилипнет к какому-нибудь месту пайки и через некоторое время разрушит ее.
Поэтому лично я бы держал жидкий металл как можно дальше от любой электроники.
Как выбрать кулер для процессора
Курс на повышение энергоэффективности и снижение нагрева комплектующих, по сей день поддерживаемый всеми производителями, а также медленное, но верное развитие штатных систем охлаждения, привели ко вполне закономерным результатам.
Так, если зайти сейчас в раздел «Системы охлаждения» в магазине ДНС, то можно обнаружить, что такие товары, как радиаторы для оперативной памяти или системы охлаждения для жёстких дисков присутствуют там в количестве одного-двух наименований, а системы охлаждения для видеокарт насчитывают в лучшем случае десяток позиций.
И в этом нет никакой вины магазина: зачем, например, пользователю менять радиаторы на оперативке, если модули DDR4 и со штатными радиаторами не перегреваются даже при напряжении в 1,38 вольта? Зачем прикручивать к жёсткому диску вентиляторы или устанавливать его в бокс-радиатор, если современные энергоэффективные модели даже без обдува еле перешагивают границу в 38 градусов?
Наконец, зачем кому-то сегодня менять штатный кулер на видеокарте, если фирменные СО вроде Gigabyte Aorus или Inno3D iChill обеспечивают более чем эффективное охлаждение и низкий уровень шума во всех возможных сценариях использования видеокарты?
Вместе с тем, ассортимент кулеров для центральных процессоров насчитывает, в зависимости от региона, от двух до трёх сотен позиций – и это ещё без учёта готовых СВО и компонентов для их сборки!
Впрочем, эта разница тоже вполне закономерна. Штатные «боксовые» кулеры по-прежнему устраивают далеко не всех – не говоря уж о том, что не все процессоры в BOX-варианте комплектуются кулерами!
Нередко разница в цене между BOX и OEM-комплектациями такова, что выгоднее оказывается приобрести процессор в OEM и более эффективный альтернативный кулер. Часть пользователей заранее планирует использовать более эффективные устройства охлаждения, чтобы добиться больших частот при разгоне процессора. Другая часть – хочет получить более низкие температуры и уровень шума, продлив тем самым жизнь процессору и собственным нервным клеткам. Ну а кого-то боксовые кулеры просто не устраивают с эстетической стороны, и это тоже оправдано.
Но, учитывая ассортимент кулеров для ЦПУ, выбор конкретной модели может стать затруднительным. Чтобы немного его упростить – воспользуйтесь данным гайдом.
Часто задаваемые вопросы
Q: А подойдет ли «название_кулера» к моей «название_материнской_платы»?
A: Вопрос совместимости кулера с материнской платой – это вопрос наличия у него креплений, подходящих под ваш сокет. Как правило, пространство вокруг разъёма для ЦПУ имеет регламентированные размеры, и допускает установку любого кулера, разработанного или адаптированного под этот сокет.
Безусловно, есть частные случаи, когда, например, близко расположенные конденсаторы мешают установить крепление, или же кулер упирается в радиаторы VRM – однако это именно частные случаи, которые можно узнать из обзоров вашей материнской платы или из опыта её владельцев на профильных форумах.
Q: А если кулер не поддерживает мой сокет?
Дело в том, что кулер-то вы ставите не на паспортные характеристики (на них в данном случае лучше положить), а на реальную материнскую плату. И совместимость тут – исключительно вопрос геометрии.
Так, все сокеты LGA 115X полностью идентичны по креплениям. Расстояние между монтажными отверстиями на материнской плате, форма пластины с тыльной стороны сокета, и сам принцип крепления не изменились со времён LGA 1156, так что никто не помешает вам поставить на Core i5-8600K боксовый кулер от Core i5-750, если у вас вдруг возникнет такое желание.
Сокет LGA 2066, в свою очередь, по креплениям полностью повторяет LGA 2011-3, и тут тоже никто не запретит установить на новую платформу модель, предназначенную для старой.
Сокет АМ4 в этом плане немного сложнее. Пластиковая рамка вокруг сокета полностью идентична предыдущим платформам – вплоть до совсем уж антикварных 754 и 939, так что установить на новый Ryzen 5 2600 можно даже боксовый кулер от Athlon 64 3000+ (хотя зачем?).
А вот монтажные отверстия в материнской плате расположены немного иначе – точнее, с другим расстоянием, чем на АМ3+ и более старых платформах. Поэтому кулерам, использующим винтовое крепление с бэкплейтом, потребуются новые крепёжные элементы.
Переходники для СВО Deepcool и Corsair наглядно иллюстрируют разницу между монтажными отверстиями сокета АМ4 и предыдущих платформ:
Сокет TR4 – это абсолютно новая платформа, ранее у AMD не было железа для сегмента HEDT. Крепления здесь не совпадают с АМ4 (впрочем, LGA 1151_v2 тоже ни разу не похож на LGA 2066), и охлаждать топовые Ryzen Threadripper можно только кулерами, предназначенными для Ryzen Threadripper.
Q: Так что делать, если у моего кулера нет креплений под новые платформы?
A: Проще всего – заглянуть в раздел «Крепления для кулера» в магазине ДНС. Продаются здесь те же самые фирменные крепления, что и в онлайн-магазинах производителей кулеров. Только они есть в наличии, и не нужно ждать их доставки по почте.
Впрочем, может оказаться, что крепления конкретно под ваш кулер в наличии не будет. В такой ситуации придётся запросить его у производителя. Как топовые бренды вроде Thermalright и Noctua, так и менее пафосные компании предлагают бесплатные «апгрейды» для своих старых продуктов. От вас потребуется только оформить запрос и оплатить почтовые услуги. Да, это дольше, чем просто купить крепление в магазине – но вполне вероятно, что дешевле покупки нового кулера.
В общем, не поленитесь посетить сайт производителя вашего кулера и выяснить, какие варианты для своих старых моделей он предлагает, и на каких условиях. Чаще всего, чтобы получить крепление, нужно просто предоставить отсканированные чеки на кулер и материнку. Может сойти и фото кулера на фоне материнской платы и чека на неё. А некоторые производители не потребуют от вас вообще никаких доказательств.
Q: Хорошо, с материнкой понятно. От чего ещё может зависеть совместимость кулера с моей системой?
A: Опять же – от его геометрических параметров. В первую очередь важна высота кулера, именно от неё зависит, поместится ли он в ваш корпус, или же не даст закрыть боковую крышку.
Как правило, высота кулера указана в его характеристиках – как в карточке товара ДНС, так и на сайте производителя. Высоту же, допустимую для вашего корпуса, узнать довольно просто – всего лишь нужно замерить расстояние от теплораспределительной крышки процессора до боковой крышки самого корпуса. Можно сделать это самостоятельно, можно понадеяться на точность измерений, сделанных производителем или авторами обзоров на оный корпус.
Во вторую очередь, важно расстояние между подошвой кулера и нижней гранью вентилятора или радиатора. Знать его необходимо затем, чтобы определить, какой высоты модуль оперативной памяти поместится в первый от сокета слот – чаще всего именно он перекрывается процессорным кулером. Хотя, если вы используете модули памяти стандартной высоты – для вас это не станет проблемой.
Увы, на этот параметр не обращают внимания ни производители, ни зачастую – авторы обзоров. Поэтому узнать, какая память поместится под кулер, можно только из опыта других владельцев… или воспользовавшись чертежом кулера, который некоторые производители публикуют в открытом доступе.
Также, если вы используете память с крупными радиаторами, и не можете переместить их в более отдалённые от сокета слоты – имеет смысл обратить внимание на кулеры со смещённым относительно центра рабочим телом радиатора. Благодаря «сдвигу» конструкции радиатор и вентилятор отдаляются от слотов оперативной памяти и перестают им мешать.
Примерно того же эффекта можно добиться, используя кулеры с узким телом радиатора, которые даже с установленными вентиляторами не достают до слотов оперативной памяти. Однако такие кулеры или окажутся достаточно высокими и габаритными в других измерениях (например, Thermalright True Spirit 140 со своими 172 мм в высоту и немалой шириной), или будут менее эффективны из-за меньшей площади теплообмена.
Q: А как определить, хватит ли кулера для моего процессора?
A: Определить именно «хватит ли» кулера, поможет такая характеристика, как TDP процессора. Некоторые до сих пор путают её то с энергопотреблением, то с реальной выделяемой тепловой мощностью, но в реальности она расшифровывается как Thermal Design Power и являет собой максимальное количество тепла, которое должна рассеивать система охлаждения чипа.
Грубо говоря, если TDP вашего процессора равняется 95 ваттам, а рассеиваемая мощность кулера – тоже 95 ватт, то этого кулера «хватит».
Но ведь кулер-то мы выбираем не просто для того, чтобы он обеспечивал работоспособность процессора! Иначе бы все использовали боксовые решения, и не задумывались об альтернативе.
Куда интереснее вопрос, сможет ли кулер обеспечить работоспособность процессора в разгоне, когда его реальное энергопотребление может превышать паспортное в полтора-два раза, какими при этом будут температуры, и насколько сильно он будет шуметь.
Тут, увы, не обойтись без чтения обзоров, в которых рассматривается работа кулера сразу в нескольких скоростных режимах, производятся замеры температур, уровня шума и сравнения с ближайшими конкурентами. Лишь на основе этого можно сделать аргументированный вывод о том, подходит ли вам тот или иной кулер, и стоит ли он тех денег, которых за него просят.
Q: Я хочу купить тихий кулер, будет ли «название_кулера» тихим, если его поставить на «название процессора»?
A: Уровень шума любого кулера на 80% зависит от рабочих оборотов его вентилятора. Оставшиеся 20% приходятся на размеры радиатора, межрёберное расстояние, наличие и характер аэродинамических оптимизаций, характеристики крыльчатки и подшипника вентилятора и так далее.
Что это означает в контексте озвученного выше вопроса?
Следовательно, если кулеру не придется раскручивать вентилятор до максимальных оборотов, чтобы процессор работал при комфортных температурах – он будет тихим. Если же придется – увы, какими бы продвинутыми характеристиками не обладал его радиатор, против аэродинамики не попрёшь. Большие объёмы воздуха, на высокой скорости протискивающиеся сквозь плотно скомпонованный радиатор, будут вызывать заметный шум.
Таким образом, если вы хотите тихий кулер – для начала придётся выбрать эффективный кулер. Причём настолько, чтобы запаса его эффективности с лихвой хватало и на разгон, и на работу при повышенных температурах в летнее время.
Q: Чтобы кулер регулировал обороты вентилятора, обязательно покупать модель с четырёхпиновым разъёмом (PWM)?
A: Не обязательно.
Хотя PWM на сегодня практически стандарт, и вентиляторы такого типа встречаются даже в самых бюджетных моделях кулеров, любая уважающая себя материнская плата умеет регулировать обороты не только посредством ШИМ, но и старым добрым способом – изменяя подаваемое на вентилятор напряжение. Диапазоны оборотов при этом не меняются, да и вентилятору это ничем особым не грозит.
Gigabyte X470 Auros Gaming 7 и регулировка вентилятора на процессором кулере.
. и даже на разъёмах для корпусных вертушек!
Q: А вот я купил «название_кулера», а он постоянно на максимальных оборотах молотит, что делать?
A: Обороты вентиляторов регулируются материнской платой в зависимости от температур охлаждаемого элемента. В данном случае – процессора.
Если отбросить тот вариант, что вы не включили регулировку оборотов в биос материнской платы (или не переключились с регулировки по ШИМ на регулировку по напряжению), то очевидной причиной окажется то, что кулер попросту не справляется с охлаждением ЦПУ.
Причин этого может быть несколько. Отбросим, опять же, вариант того, что кулер слишком слабый для вашего процессора – тут комментарии излишни.
Если вы используете процессор с термопастой под крышкой – он вполне закономерно будет греться под серьёзной нагрузкой, и кулер на это повлиять никак не сможет: перегрев начинается сильно раньше него по цепочке передачи тепла. Материнская плата же, видя на процессорных ядрах 80+ градусов, вполне логично повышает обороты вентиляторов. И единственный выход здесь – настраивать собственную кривую оборотов, учитывающую характер процессора.
Если же под крышкой у вас припой, но процессор всё равно не слишком холодный, а кулер работает при повышенных оборотах – стоит задуматься о вентиляции в корпусе, а то и о приобретении более качественного/современного кейса. Увы, но каким бы холодным ни был процессор, и сколь бы эффективным ни был кулер, если им придётся работать в тесном и душном ящике эпохи первых стандартов ATX или тому подобном творении китайских мастеров – рано или поздно температура в корпусе вырастет, а вместе с ней – и скорость вращения вентилятора на кулере.
На что нужно обратить внимание при выборе кулера ЦПУ?
Сокет
Как уже говорилось ранее, этот момент нужно рассматривать только в контексте. Важен не сам сокет, а тип крепления.
Все сокеты LGA 115X в этом плане абсолютно идентичны: LGA 1151_v2, LGA 1151, LGA 1150, LGA 1155 и LGA 1156 используют одинаковое крепление, причём без разницы, крепится ли кулер при помощи пуш-пинов, или же через винтовое крепление с бэкплейтом. Абсолютно любой кулер, совместимый с одним из сокетов, будет совместим с остальными.
Сокет LGA 2066 идентичен LGA 2011-3, поэтому кулер можно демонтировать со старой платформы и спокойно продолжать пользоваться им на новой.
Все предыдущие сокеты AMD: AM3+, AM3, FM2+, FM2, AM2+, AM2, FM1 и 939 также имеют одинаковое крепление, причём без разницы, крепится ли кулер за штатную пластиковую рамку, или же через бэкплейт – монтажные отверстия в материнских платах также идентичны. Отличается здесь только сокет 754, но на сегодняшний день это совсем уж музейная ценность.
Сокет АМ4 обладает идентичной пластиковой рамкой, и к нему подойдёт любой кулер, крепящийся к ней при помощи прижимной скобы – причём не важно, указал ли производитель совместимость с этой платформой в характеристиках. А вот кулеры с бэкплейтом, увы, потребуют новых крепёжных элементов, которые можно докупить отдельно или заказать у производителя.
ID-Cooling SE-214X установлен на сокет АМ4.
. при том, что во официальных спецификациях его нет!
Сокет TR4 совместим только с самим собой, поскольку это новая платформа, не имеющая прямых предшественников. Но, учитывая долгий жизненный цикл, кулер, купленный под эту платформу сегодня, будет охлаждать далеко не одно поколение процессоров.
Материал основания
Этот аспект не столь важен для кулеров на тепловых трубках – они чаще всего представляют собой комбинацию алюминиевого основания и впрессованных в него медных (иногда никелированных) трубок, но это ничуть не мешает им показывать достойный уровень эффективности.
А вот для простых кулеров типа «аналог бокса» наличие медного основания в виде центральной тепловой колонны, медной пластины, к которой припаяны алюминиевые рёбра, или хотя бы простого медного диска, впрессованного в основание – серьёзный плюс. Таким простым и архаичным конструкциям переход на использование меди, теплопроводность которой в 1,6-1,7 раза выше, чем у алюминия, способен дать весьма ощутимые дивиденды.
Никелированная медь в качестве материала для теплосьёмников применяется в основном в кулерах топ-класса, где радует своей зеркальной поверхностью, но на эффективности особо не сказывается – её там обеспечивают другие характеристики.
Башенная конструкция (и конструкция вообще)
Современные (и не очень) кулеры для ЦПУ можно условно разделить на три основных типа в зависимости от их конструкции:
Кулеры типа «аналог бокса», даже не получившие собственного названия, представляют собой компактный радиатор со смонтированным сверху вентилятором. Могут иметь разную конструкцию: тут и центральные тепловые колонны с расходящимися от них лепестками, и выфрезерованные блоки, и чаши из спрессованных пластин. Различаются они и по материалам: помимо алюминия применяется медь, и даже тепловые трубки – уже нередкие гости в этом сегменте.
Такие кулеры всегда отличаются компактными размерами, относительно небольшой ценой и такой же невысокой эффективностью – достаточной, впрочем, для процессоров начального ценового сегмента, и немалой доли среднего ценового сегмента.
Причём у этих кулеров по факту немало достоинств: будучи дешевле боксовых, они могут отличаться и более высокой эффективностью, и пониженным уровнем шума. При этом они сохраняют небольшие размеры и остаются совместимыми с любой материнской платой, не вступая в конфликты с элементами в околосокетном пространстве.
Кулеры топ-конструкции называются так не потому, что занимают топовые строчки во всех тестах или всех прайсах. «Топ» здесь происходит от top-mount или top-flow.
Собственно, название и раскрывает суть: как и на кулерах предыдущего типа, вентилятор здесь монтируется сверху радиатора и дует в направлении материнской платы. В этом и заключается основное преимущество таких кулеров: охлаждается не только процессор, но и элементы VRM материнской платы. Что в отдельных случаях может оказаться крайне полезным – например, если вы используете процессор с энергопотреблением в 100 и выше ватт, а питание к нему подводится всего лишь по трём фазам.
В конструкции таких кулеров используются те же материалы и решения, что и в «башнях»: тепловые трубки, медные никелированные основания, рёбра с полным набором аэродинамических оптимизаций и так далее. Однако, в отличие от башен, топ-кулеры не могут безостановочно наращивать площадь поверхности теплообмена: их ограничивают и габариты материнских плат, и сам принцип конструкции. В результате топы всегда проигрывают башням по эффективости, а ценник на них зачастую сопоставим.
Подвидом топов можно считать кулеры для HTPC – это своего рода «особый жанр» в кулеростроении, где во главу угла ставится миниатюризация девайся, и в первую очередь – уменьшение его высоты. Общий принцип конструкции сохраняется, но за счёт низкопрофильных вентиляторов, уменьшения высоты радиаторов и других приёмов кулер получается вписать в самые компактные корпуса форматов mini-ITX и даже меньшие.
Собственно, в этом и заключается их основное преимущество. Использовать кулеры для HTPC в «полноразмерном» десктопном железе, конечно, можно, но никакой выгоды вы от этого не получите, а затраты окажутся совершенно не соответствующими итоговой эффективности охлаждения.
Наконец, кулеры башенной конструкции представляют собой «пакет» рёбер, нанизанных на расположенные вертикально или под небольшим углом тепловые трубки. В противовес топам, эти кулеры практически не обдувают пространство вокруг сокета, однако эффективность охлаждения самого ЦПУ с их помощью будет гораздо выше.
Дело в том, что башня в силу своей конструкции получает плюсы и от работы корпусных вентиляторов, и от естественной конвекции. Кроме того, башня позволяет доводить площадь поверхности теплообмена до впечатляющих значений: рёбра, возвышающиеся над элементами материнской платы, могут иметь практически любые габариты и форму. Да и вентиляторов на башню можно установить не один, а два или три, что также повысит её эффективность.
Не удивительно, что все флагманские модели кулеров для ЦПУ имеют башенную конструкцию – иногда даже из нескольких отдельных секций.
Количество тепловых трубок
В современных кулерах отвод тепла от основания радиатора и его передача непосредственно в рабочее тело осуществляется при помощи тепловых трубок. Трубки представляют собой замкнутые ёмкости с жидкостью, кипящей при сравнительно низких температурах.
Внутри трубки происходит постоянный и цикличный процесс испарения и конденсации жидкости. На «горячей» стороне трубки жидкость превращается в пар, затем – поднимается к её «холодным» частям, где конденсируется и стекает обратно. В процессе, разумеется, перенося тепло с охлаждаемого элемента.
Причем процесс переноса тепла происходит ощутимо быстрее, чем в случае цельного металла – теплопроводность тепловых трубок может превышать показатель чистой меди буквально на порядок.
Нужно понимать, что тепловая трубка не является охладителем: тепло она не рассеивает, а только отводит. Поэтому количество тепловых трубок само по себе, в отрыве от площади и конструкции радиатора, не является гарантом эффективности кулера. Тем не менее, количество трубок позволяет ранжировать кулеры следующим образом:
Без тепловых трубок обходятся кулеры начального уровня – те самые аналоги боксовых решений. Особой эффективностью они не отличаются, но не только из-за отсутствия трубок. Основной причиной выступает малая площадь теплообмена и архаичная конструкция кулера.
Ради справедливости стоит отметить, что без тепловых трубок обходятся кулеры, заменившие их испарительной камерой – по сути той же трубкой, но плоской и служащей в качестве основания теплосъёмника. Однако широкого распространения такое решение не получило в силу сложности и не самой выдающейся эффективности.
Одну или две тепловых трубки можно обнаружить в топах и башнях начального уровня: такие кулеры уже будут заметно эффективнее и, возможно, тише боксовых решений. Однако для серьёзного разгона топовых процессоров они уже не подойдут.
Три-четыре трубки – это практически стандарт для большинства кулеров среднего ценового сегмента. Такие решения в большинстве случаев имеют оптимальное сочетание цены и эффективности охлаждения – хотя, опять же, не только за счёт трубок.
Пять и более тепловых трубок – черта суперкулеров, способных охлаждать любые процессоры при минимальном уровне шума. Но и здесь работают в первую очередь не трубки, а решения, примененные в конструкции радиаторов. Трубки же лишь позволяют им работать так, как задумано инженерами.
Однако стоит обратить внимание и ещё на один факт: важно не только количество трубок, но и их диаметр. Например, при прочих равных характеристиках, кулер на четырёх трубках диаметром 8 мм может оказаться эффективнее кулера на шести трубках диаметром 6 мм.
Разъём для подключения вентиляторов и регулировка скорости вращения
Разъём для подключения вентиляторов может иметь либо три, либо четыре контакта. Второй случай означает, что вентилятор обладает регулировкой оборотов по методу ШИМ (PWM).
Многие до сих пор считают, что наличие разъёма 3-pin означает, что вентилятор всегда будет работать на максимальных оборотах. Однако это не так: в таком случае регулировка также доступна, но осуществляться будет посредством изменения подаваемого на вентилятор напряжения.
ШИМ (широтно-импульсная модуляция) предлагает другой метод: напряжение здесь остаётся на одной отметке, изменяется же скважность импульсов тока (соотношение периода повторения импульсов к длине отдельного импульса). В результате регулировка получается более плавной, а её диапазон становится шире: например, среди вентиляторов с ШИМ нетрудно обнаружить модели с минимальной скоростью в 800 об/мин и максимальной – в целых 3000 об/мин.
И всё же, вентилятор с ШИМ – не такое уж большое преимущество кулера, и не только потому, что регулироваться будет и трёхпиновый вариант. Вентилятор – это вообще по большому счёту расходник, который со временем (или по желанию) можно поменять, а потому явно не стоит ориентироваться только на него, забывая об остальных параметрах кулера. Но так или иначе, большинство современных кулеров оснащаются вентиляторами с ШИМ с завода, и проблема выбора постепенно исчезает сама собой.
Единственный остающийся вопрос: можно ли подключать вентилятор с разъёмом 4-pin в трёхпиновую колодку, и наоборот?
Да, можно. Но регулировка через ШИМ в таком случае работать не будет – что, впрочем, и очевидно.
Также стоит учесть, что некоторые кулеры предлагают «ручной» механизм регулировки оборотов. В качестве такового могут выступать как обычные переходники с резистором, понижающим подаваемое на вентилятор напряжение, так и подстроечные резисторы, позволяющие настраивать напряжение (и обороты кулера) самостоятельно и в довольно широких пределах.
Подсветка
Система с RGB встроится в единую систему подсветки компьютера и будет менять цвета синхронно с остальными компонентами, например материнской платой, оперативной памятью, видеокартой. В зависимости от типа подсветки, для питания используются разные виды коннекторов, что очень важно учитывать при выборе, так как некоторые из них могут быть несовместимы с материнской платой.
Одноцветная LED-подсветка может поддерживать только один зафиксированный цвет. В данном случае нельзя изменить цвета на другой или изменить режим частоты подсветки. Такая подсветка питается от того же коннектора что и мотор вентилятора или помпы. Это может быть 3-pin или 4-pin PWM или Molex разъемы. Встречаются так же комбинированные варианты.
RGB-подсветка поддерживает весь спектр основных цветов радуги за исключением того, что в каждый момент времени устройство поддерживает только 1 цвет: белый, красный, желтый, зеленый, синий и фиолетовый (а также полное отключение подсветки, т.е. черный цвет). Кроме того, имеется возможность изменения режимов частоты работы подсветки, что поможет выбрать более подходящий для вас тип освещения. В такую подсветку встроены светодиоды 12v, которые контролируются специальными микросхемами в хабе или в материнской плате. Подсветка работает за счет распределения питания диодов по отдельным каналам: вентиляторы подключаются отдельно, а RGB-система — с помощью специального кабеля — к контроллеру. Питание такой подсветки подключается через разъемы 4pin 12V или 6-pin.
A-RGB-подсветка (Adressable RGB) — это более новая и более продвинутая версия RGB-подсветки. Ее основное отличие — возможность распределения цветовых сигналов между диодами раздельно, за счет того, что используется диоды 5V вместо 12V. Такая подсветка дает ультимативные возможности по ее настройке. Управление происходит с помощью программного обеспечения совместимого с вашей материнской платой, либо через ПДУ. A-RGB подсветка питается через коннектор 3pin 5v, вместо 4pin 12v.
НИКОГДА не пытайтесь подключить RGB-устройство к 3pin разъему, так как это почти мгновенно повредит материнскую плату. Обратной совместимости между 3pin 5v и 4pin 12v НЕ СУЩЕСТВУЕТ.
ARGB-подсветка позволяет выстраивать более сложные цветовые схемы благодаря наличию большего количества оттенков и возможности их чередования — начиная от обычной радуги, и заканчивая чередованием нескольких цветов одновременно.
Если вдруг у вашей материнской платы не предусмотрен контроль подсветки, то у многих моделей есть собственный независимый пульт, который «курирует» скорость, режимы и цвет. Ниже представлены типы разъемов в зависимости от производителя.
Размеры и количество комплектных вентиляторов
Хотя, как говорилось ранее, вентилятор – это расходный материал, он во многом определяет и эффективность, и эксплуатационные характеристики кулера, а потому при выборе внимание на него стоит обращать в первую очередь.
Прежде всего – по самой очевидной причине. Если вентилятор – это расходник, который со временем изнашивается, то значит, рано или поздно его придётся заменить. А на что именно – вопрос отнюдь не такой простой.
Среди вентиляторов для ПК насчитывается множество типоразмеров, но наиболее распространены следующие: 80×80 мм, 92×92 мм, 120х120 мм и 140х140 мм. Именно под их установку рассчитаны компьютерные корпуса, именно они применяются на радиаторах СВО и в блоках питания.
А это значит, что найти их можно практически всегда и везде. Причём выбор вентиляторов в этих типоразмерах максимально широк и включает модели на любой вкус и кошелек. В результате, если вам срочно потребуется заменить вентилятор на кулере, чтобы завтрашним утром успеть сдать работу – проблем с поиском подходящих вариантов не возникнет.
А вот с «редкими» типоразмерами вроде 65х65 мм, 70х70 мм, 75х75 мм, 100х100 мм всё не так просто: их, конечно, можно заменить наиболее близким по размерам аналогом, но крепление придётся изобретать самостоятельно, что не всем и не всегда удобно.
Исключением тут будут являться кулеры с вентиляторами нестандартного размера, но со стандартными посадочными местами: например, 130 мм с креплениями под 120 мм, или 150 мм с креплениями под 140 мм.
Но это то, что касается эксплуатационных характеристик. А как размер вентилятора влияет на эффективность кулера?
Самым прямым образом. Во-первых, чем шире размах лопастей – тем больший создается воздушный поток (хотя здесь не менее важна скорость вращения), и тем выше эффективность охлаждения. Во-вторых, больший типоразмер вентилятора автоматически предполагает и большие габариты самого радиатора – а значит, и большую площадь поверхности теплообмена.
Наконец, чем больше вентилятор – тем меньшие обороты ему понадобятся, чтобы создать воздушный поток одной и той же силы. К примеру, чтобы достичь производительности условного 120-мм вентилятора, вращающегося на 800 об/мин, не менее условному 92-мм вентилятору потребуются 1200 об/мин, а 80-мм – и все 2000 оборотов. Надо ли говорить, какой из вентиляторов в итоге окажется тише?
Количество вентиляторов в комплекте с кулером – критерий менее важный, но в отдельных случаях и он может иметь значение.
Большинство кулеров для ЦПУ, вне зависимости от ценового сегмента, поставляются с одним вентилятором – и, что интересно, большего им и не надо. Так, топы могут вообще не поддерживать установку второго вентилятора ввиду своих размеров и конструкции. А башни – обладать или узким радиатором, легко продуваемым одной вертушкой, или широким межрёберным расстоянием: в обоих случаях установка второго вентилятора ровным счетом ничего им не даст.
Реально важно количество вентиляторов для двухсекционных кулеров – они действительно получают качественный и заметный прирост от установки двух или даже трёх вертушек.
С другой стороны, если кулер поставляется в комплекте с двумя вентиляторами – второй можно использовать как запасной или установить в качестве корпусного, так что недостатком это никак не будет.
Критерии и варианты выбора:
Резюмируя вышесказанное, рекомендации по выбору кулера для процессора можно сформулировать следующим образом:
Есть ли смысл в данном случае обращать внимание на башенные кулеры из начального ценового сегмента – решать уже вам. Они, конечно, будут эффективнее бокса, но не будут обдувать зону VRM, а для бюджетных систем это довольно важно.
Если вам нужен недорогой, но эффективный кулер для системы без разгона, или под разгон не самого горячего и прожорливого процессора – вам помогут недорогие башни и топы. Преимуществом последних, опять же, станет обдув зоны VRM – и вовсе не стоит пренебрегать им, если ваш процессор в разгоне потребляет 140-150 ватт, а питается через четыре фазы!
В случае сборки HTPC в компактном, особенно в низкопрофильном корпусе, стоит обратить внимание на специализированные решения, отличающиеся небольшой высотой. Согласитесь, мало толку от эффективного охлаждения, если оно мешает закрыть корпус. Низкопрофильные кулеры для HTPC предлагаются в довольно широком ассортименте.
Эффективные башенные кулеры из верхней границы среднего и топового ценового сегмента позволят вам разгонять процессоры с любым энергопотреблением и тепловыделением, сохраняя при этом низкий уровень шума. Если вас ограничивает допустимая корпусом высота – выбирайте относительно компактные модели. Если же нет – лимитом окажется только ваш бюджет.