что лучше полиамид или пвх
Как определить разные виды пластика
Мы практически безошибочно определяем пластмассу, отличаем её от дерева, металла и других материалов. Но как определить тип пластика? Чем пластики отличаются друг от друга?
Определение типа пластика по идентификационному знаку
Типы пластика, подлежащие сбору и вторичной переработке, обозначены разными символами. Коды согласованы на международном уровне, чтобы прояснить химический состав каждого пластикового изделия и определить возможность вторичной переработки этих изделий.
1. PET или PETE — полиэтилентерефталат (ПЭТ или ПЭТФ). Это материал, из которого делают пластиковые бутылки. ПЭТ широко используется в мире для изготовление различных упаковочных изделий (бутылки, коррексы, бандажная лента). Кроме этого ПЭТ используется для изготовления утеплителя «синтепон», а также других нетканых материалов.
3. PVC — поливинилхлорид (ПВХ). Обычный поливинилхлорид достаточно жесткий пластик. Для придания ему большей мягкости в него добавляют пластификаторы. Из этого материала изготавливают различные изделия хозяйственно и строительного назначения: трубы, отделочные панели, оконные рамы. Из ПВХ изготавливают обувные подошвы и детские игрушки.
4. LDPE — полиэтилен низкой плотности (высокого давления ПВД). В основном этот пластик идет на изготовление пленки и мешков.
5. PP — полипропилен (ПП). Этот пластик имеет белый цвет или полупрозрачные тона. Что за материал используется в качестве упаковки для сиропов и йогурта. Полипропилен ценится за его термоустойчивость. Когда он нагревается, то не плавится. Относительно безопасен.
6. PS — полистирол (пластмасса ПС). Это жесткая пластмасса. Используется для изготовления корпусов бытовой электроники. Из полистирола изготавливают много одноразовой посуды.
7. OTHER или О — прочие. К этой группе относится любой другой пластик, который не может быть включен в предыдущие группы.
Кроме этого, изделия, изготовленные из вторичных полимеров, обозначаются дополнительной буквой «R». Например, RPET, RHDPE, RPVC, RLDPE, RPP, RPS. Такие изделия также подлежат дальнейшей вторичной переработке.
Определение вида пластика по характеру горения
Несмотря на свою простоту, испытание на горение следует использовать с осторожностью из-за токсичности многих продуктов сгорания. Не стоит сразу прибегать к этому способу, особенно с образцом неизвестного полимера.
Как определить ПЭВД
Горит синеватым, светящимся пламенем с оплавлением и горящими потеками полимера. При горении становится прозрачным, это свойство сохраняется длительное время после гашения пламени. Горит без копоти. Горящие капли, при падении с достаточной высоты (около полутора метров), издают характерный звук. При остывании, капли полимера похожи на застывший парафин, очень мягкие, при растирании между пальцами- жирны на ощупь. Дым потухшего полиэтилена имеет запах парафина. Плотность ПЭВД: 0,91-0,92 г/см. куб.
Как определить ПЭНД
Более жесткий и плотный чем ПЭВД, хрупок. Проба на горение – аналогична ПЭВД. Плотность: 0,94-0,95 г/см. куб.
Как определить Полипропилен
При внесении в пламя, полипропилен горит ярко светящимся пламенем. Горение аналогично горению ПЭВД, но запах более острый и сладковатый. При горении образуются потеки полимера. В расплавленном виде — прозрачен, при остывании — мутнеет. Если коснуться расплава спичкой, то можно вытянуть длинную, достаточно прочную нить. Капли остывшего расплава жестче, чем у ПЭВД, твердым предметом давятся с хрустом. Дым с острым запахом жженой резины, сургуча.
Как определить Полиэтилентерафталат (ПЭТ)
Прочный, жёсткий и лёгкий материал. Плотность ПЭТФ составляет 1, 36 г/см.куб., поэтому он тонет в воде. При горении сильно коптящее пламя. При удалении из пламени самозатухает.
Как определить Полистирол
При сгибании полоски полистирола, легко гнется, потом резко ломается с характерным треском. На изломе наблюдается мелкозернистая структура.Горит ярким, сильно коптящим пламенем (хлопья копоти тонкими паутинками взмывают вверх!). Запах сладковатый, цветочный. Полистирол хорошо растворяется в органических растворителях (дихлорэтан, ацетон, бензол).
Как определить Поливинилхлорид (ПВХ)
Горит с трудом, при удалении из пламени затухает. При горении сильно коптит, в основании пламени можно наблюдать яркое голубовато-зеленое свечение. Очень резкий, острый запах дыма. При сгорании образуется черное, углеподобное вещество (легко растирается между пальцами в сажу). Растворим в четыреххлористом углероде.
Как определить Поликарбонат (органическое стекло)
Прозрачный, прочный, но хрупкий материал. Горит синевато-светящимся пламенем с легким потрескиванием. У дыма острый фруктовый запах (эфира). Легко растворяется в дихлорэтане.
Как определить Полиамид (ПА)
Материал имеет отличную масло-бензостойкость и стойкость к углеводородным продуктам, которые обеспечивают широкое применение ПА в автомобильной и нефтедобывающей промышленности (изготовление шестерен, искуственных волокон…). Полиамид отличается сравнительно высоким влагопоглощением, которое ограничивает его применение во влажных средах для изготовления ответственных изделий. Горит голубоватым пламенем. При горении разбухает, «пшикает», образует горящие потеки. Дым с запахом паленого волоса. Застывшие капли очень твердые и хрупкие. Полиамиды растворимы в растворе фенола, концентрированной серной кислоте. Плотность: 1,1-1,13 г/см. куб. Тонет в воде.
Как определить Полиуретан
Основная область применения – подошвы для обуви. Очень гибкий и эластичный материал (при комнатной температуре). На морозе — хрупок. Горит коптящим, светящимся пламенем. У основания пламя голубое. При горении образуются горящие капли-потеки. После остывания, эти капли – липкое, жирное на ощупь вещество. Полиуретан растворим в ледяной уксусной кислоте.
Как определить Пластик АВС
Все свойства по горению аналогичны полистиролу. От полистирола достаточно сложно отличить. Пластик АВС более прочный, жесткий и вязкий. В отличие от полистирола более устойчив к бензину.
Как определить Фторопласт-3
Применяется в виде суспензий для нанесения антикоррозийных покрытий. Не горюч, при сильном нагревании обугливается. При удалении из пламени сразу затухает. Плотность 2,09-2,16 г/см.куб., тонет в воде.
Как определить Фторопласт-4
Безпористый материал белого цвета, слегка просвечивающийся, с гладкой, скользкой поверхностью. Очень хороший диэлектрик. Не горюч, при сильном нагревании разлагается. Не растворяется практически ни в одном растворителе.
Что лучше полиамид или полиэстер и чем отличаются
Сегодня нас окружают вещи из синтетических материалов. Для создания текстильных изделий, преимущественно используют полиамид и полиэстер. Эти полимеры похожи по характеристикам и свойствам. Не сразу можно понять, чем отличается полиамид от полиэстера, разница в исходном материале: первый получается из пластмассы, второй из расплава полиэтилентерефталата.
Одежда из синтетики в XXI веке, всё чаще оказывается признаком высокого качества по оптимальной цене. Современные технологии приблизили природу данных полотен к натуральным тканям, сделали их похожими на хлопок, лён, вискозу и т.д., но более прочными. Такими их делают вещества, которые вырабатывают путём перегонки нефтепродуктов, каменного угля и природного газа.
В 1862 г. был извлечён первый полиэфир, а в 1938 г. – первое искусственное волокно, из которого с 60-х гг. прошлого века производят ткань.
Отличия полиамида и полиэстера
Синтетические вещества сегодня активно используют при создании материалов и пошиве текстильных изделий. Каждый из них выполняет свою роль в совершенствовании различных видов тканей.
Сложно сказать, что же лучше. Основное отличие полиамида от полиэстера в том, что их получают из разных полимеров. Характеристики этих материалов похожи с незначительной разницей, которую легко проследить, с помощью следующей таблицы.
Свойства | Полиэстер | Полиамид |
Внешний вид | Гладкий | Изначально шероховатый, но может быть гладким |
Физические особенности | Не пропускает воздух, не мнётся, более тяжёлый, гибкий, не подвержен биологическим воздействиям (плесень, микробы, моль и т.п.) | Пропускает воздух, практически не мнётся, более лёгкий, эластичный, не подвержен биологическим воздействиям (плесень, микробы, моль и т.п.) |
Степень эластичности | Менее эластичный | Более эластичный |
Водоотталкивающие свойства | Чуть более высокая гигроскопичность | Низкая гигроскопичность |
Устойчивость к загрязнению | Более низкая | Более высокая, кроме жирных загрязнений |
Восприимчивость к окрашиванию | Плохо поддаётся окрашиванию | Хорошо поддаётся окрашиванию в любой оттенок |
Восприимчивость к воздействию прямых солнечных лучей | Может потерять цвет под воздействием солнечных лучей | Не выгорает и не линяет |
Степень прочности | Менее прочный | Более прочный |
Степень сложности в уходе | Можно стирать при 40 градусах | Можно стирать при низкой температуре, но трудно выводятся жирные пятна |
Возможность химчистки | Можно | Нельзя |
Использование в текстильной промышленности | Часто используется | В чистом виде практически не используется |
Использование в других отраслях промышленности | В основном изготавливают текстиль: ткани, утеплители, шторы, сумки, палатки и т.д. | Используют для производства автомобильных шин, лент для транспортёров, лески, рыболовных снастей, канатов, спецодежды для работы в экстремальных условиях и т.д. |
Экологические свойства | Не разлагается, но можно перерабатывать | Не разлагается, не подлежит переработке |
Цена | Более низкая | Более высокая |
Современные производители давно поняли, что для создания качественного материала, искусственные волокна лучше смешивать. Путём различных манипуляций люди научились придавать синтетическим тканям любые свойства и вид.
Добавление полиэстера в ткань, придаёт ей лёгкость, долговечность, защищает от деформации. Так же полиэфирные волокна используются для изготовления защитных и декоративных покрытий (натяжные потолки, профлисты, металлочерепица и т.п.).
У полиамидных тканей существует несколько разновидностей:
- нейлон – лёгкий, эластичный, применяют для создания колготок, трикотажных изделий и свитеров; таслан – прочная, дышащая ткань, используется для пошива верхней одежды; велсофт – мягкая, ворсистая ткань, хорошо подходит для тёплой детской одежды и изделий для дома (полотенца, одеяла и др.); джордан – приятная ткань с водоотталкивающим и дышащим эффектом; эластан – способен растягиваться в 6-8 раз, легко возвращается в прежнее состояние, сохраняя изначальный вид.
Полиамид – это общее название группы синтетических материалов, первым из которых был нейлон, он же один из самых распространённых видов.
Полиамидные волокна чуть толще человеческого волоса, а способны выдержать вес до полутора килограмм. Это позволяет производить тонкую и лёгкую ткань, не пропускающую воздух, которая идеально подходит для изготовления верхней одежды.
Свойства полиамида и особенности ухода
Современные производители текстильной продукции, полиамид, в чистом виде, практически, не используют. Его соединяют с искусственными и натуральными волокнами (шерсть, хлопок, лён, вискоза и др.) для улучшения их свойств. Само вещество эластично, но будет ли тянуться сотканное полотно или нет, зависит от состава.
У полиамида есть свои плюсы и минусы.
- Прочный; Эластичный; Лёгкий; Можно сделать его непромокаемым, и невоспламеняющимся, пропитав специальными растворами; Долго не изнашивается (сохраняет форму, не протирается и не растягивается и т. п.); Пропускает воздух; Хорошо поддаётся окрашиванию в любой оттенок, не выцветает; Легко стирается и быстро сохнет; Совместим с натуральными волокнами; Не поддаётся биологическим воздействиям (размножению грибка, возникновению моли, гниению и т. п.).
- Сильно электризуется; Может вызвать аллергическую реакцию (касается 100% полиамида); Не удерживает тепло; Тяжело выводятся жирные пятна.
Такая особенность, как низкая гигроскопичность (не впитывает влагу), одновременно является и преимуществом, и недостатком.
В уходе полиамид неприхотлив, но есть нюансы:
Следует отметить, что он быстро сохнет.
Свойства полиэстера и особенности ухода
Полиэстер более современный вид синтетической ткани. В основном его применяют для пошива верхней и спортивной одежды. Его вид и свойства схожи с полиамидом, в чём же тогда разница?
Полиэстер менее прочный, чем полиамид, к тому же он жёстче и тяжелее. В чистом виде не пропускает воздух, а волокна 100% полиэстера плохо поддаются окраске. Термоустойчив – это значит, что он хорошо удерживает форму под воздействием тепла, весьма полезно и удобно при создании вещей с драпировками или складками.
Увы, но такие ткани быстрее теряют товарный вид, подвержены образованию «катышков» и, в отличие от полиамида, не так долговечны.
Синтетические ткани ни в коем случае нельзя отбеливать средствами, содержащими хлор или варить.
За изделиями с добавлением полиэстера также легко ухаживать. Единственное отличие – его можно и нужно стирать с применением смягчающих средств.
Что шьют из полиамида и полиэстера?
Появление полимеров расширило потенциал текстильной промышленности. Водо-, грязеотталкивающая и огнеупорная ткань – больше не является плодом воображения фантастов и мечтателей. Индустрия моды получила возможность разрабатывать не только красивую, но и функциональную одежду для людей из различных сфер деятельности.
Из искусственных тканей создают:
- Спортивную одежду – костюмы, футболки, легинсы Верхнюю одежду – куртки, ветровки, пуховики, пальто Детскую одежду Повседневную одежду – блузки, юбки, брюки, платья Носочно-чулочные изделия – колготки, чулки, носки Спецодежду Домашний текстиль – пледы, покрывала, полотенца, постельное бельё, шторы Обивку для мягкой мебели Сумки, рюкзаки, кошельки и т.п.
Помимо этого, полимерные волокна добавляют в пряжу.
Современные технологии позволяют шить качественные вещи из синтетики, за которыми просто ухаживать и приятно носить. Использование подобных материалов распространяется на туристическую, медицинскую, автомобильную, спортивную и другие сферы. Практически во всех, окружающих предметах, содержатся полиамид и полиэстер.
Заключение
Из всего вышесказанного, вывод напрашивается сам собой – ни одна из этих тканей не является лучше другой. И полиэстер, и полиамид имеют свои преимущества и недостатки, которые определяют сферу их использования с учётом поставленных задач. Если нужна лёгкая, гибкая, высокопрочная и долговечная ткань, то лучше выбрать полиамид. Когда же экономичность и хорошие изолирующие свойства играют более важную роль, чем долговременное использование, следует обратиться к полиэстеру.
От полимеров к пластикам. Часть 3. Термопласты
Полиоксиметилен (ПОМ или POM) также является кристаллическим полимером с температурой плавления около 180 °С. Его механические свойства позволяют ему постепенно заменять металлы в ряде областей. Многие технические детали изготавливаются из POM: зубчатые колеса, штанги, автомобильные аксессуары, детали некоторых аппаратов и машин и даже корпуса бытовой техники. Полимер используется и как таковой (под торговой маркой Delrin), но также и в качестве сополимера с небольшим количеством этиленоксида (марки Celcon и Hostaform).
Поликарбонат (ПК или PC) до температуры 140 °С представляет собой аморфный стекловидный прозрачный полимер с превосходными механическими свойствами, в частности в отношении его ударной вязкости. Это делает его очень подходящим для замены стекла, а также для ряда технических применений, в которых он заменяет металлы. В последнем случае армирование короткими стеклянными волокнами открывает дополнительные возможности. Слабым местом ПК является его низкая устойчивость к растрескиванию под воздействием окружающей среды при контакте с рядом органических жидкостей. Из поликарбоната делают автомобильные стёкла и посуду.
Полиэтилентерефталат (ПЭТФ или PET) представляет собой насыщенный полиэфир и, как и нейлон, известен своим широким использованием в качестве текстильного волокна. Кроме того, он применяется в увеличивающихся масштабах на рынке упаковки: из него изготавливают пленки, бутылки методом пресс-формования. Хотя его жесткость значительно снижается при температуре выше 70 °С, он остается твердым до температуры плавления (255 °С).
Полибутилентерефталат (ПБТ или PBT) по своей химической структуре незначительно отличается от ПЭТФ: его температура плавления несколько ниже, но при этом его технологичность лучше. Применение в литьевых изделиях аналогично применению для ПЭТФ. Кроме того, ПБТ с некоторых пор стал очень популярным материалом для изготовления комплектующих для компьютеров — из него изготавливают корпуса персональных компьютеров и ноутбуков, а также клавиатуры и компьютерные мыши.
Полифениленоксид (PPO) или полифениленовый эфир (PPE) представляет собой аморфный полимер с температурой размягчения около 210 °C. Чтобы улучшить его обрабатываемость, его в основном смешивают с PS (модифицированные PPE, например, Noryl), что достигается за счет его температуры теплового искажения. Свойства материала при этом отличные, а область применения охватывает автомобильную промышленность и бытовую технику, где из PPO изготавливают различные мелкие детали.
Полисульфон (PSU) – высокоэффективный полимер с превосходными механическими, электрическими и термическими свойствами в диапазоне температур от –100 до +180 °C. Он в основном используется в требовательных механических и электрических приложениях. Полифениленсульфид (PPS) (например, Ryton) является высококристаллическим полимером с температурой плавления около 290 °C. Он сочетает в себе хорошие механические свойства с очень высокой термической и химической стойкостью, а кроме того, является самозатухающим материалом. Используется в качестве защитного покрытия на металлических поверхностях.
Полиимид (PI) покрывает все другие полимеры по температурному диапазону эксплуатации, который охватывает температуры от –200 до 260 °C с кратковременными перепадами до 500 °C. Из-за его высокой цены он используется только в сфере высоких технологий для производства компонентов космических аппаратов, ядерных реакторов и некоторых электронных компонентов. Более новые разработки, связанные с полиимидом, представляют собой полиэфиримиды (например, Ultem) и полиамидимиды (например, Torlon) – все с очень хорошими механическими, термическими и электрическими свойствами и самозатухающие.
Политетрафторэтилен (ПТФЭ или PTFE), в основном известный как «Тефлон», обладает особыми свойствами: это высокая температура плавления (327 °С), очень хорошая стойкость к химикатам и чрезвычайно низкое трение, хотя полимер является механически слабым и демонстрирует сильную склонность к ползучести. При этом обработка очень сложна (возможна только через процесс спекания) и, хотя она очень дорогая, PTFE незаменим в ряде применений, таких как подшипники, трубы с максимальной химической стойкостью, кольцевые уплотнения, электроизоляция и покрытия для некоторых предметов. Часто этот полимер дополнительно армируется наполнителями, что позволяет значительно улучшить его механические свойства.
Тетрафторэтилен-перфторпропилен (FEP) напоминает ПТФЭ по своим свойствам, хотя и немного уступает ему в термостойкости, а поливинилиденфторид (PVDF или ПВДФ) и этилен-тетрафторэтиленовый сополимер (ETFE) можно рассматривать как «разбавленные» PTFE, которые по своей структуре и своим свойствам находятся между PTFE и полиолефинами PE и PP. Они могут обрабатываться обычными методами и находят применение, аналогичное PTFE. Ещё один подобный фторполимер называется этиленхлортрифторэтилен (ECTFE), который сравним по своим свойствам с PVDF.
Ацетат целлюлозы (CA) и ацетатбутират целлюлозы (CAB), в отличие от упомянутых выше полимеров, не являются полностью синтетическими, но являются производными растительной целлюлозы. Это прочные и хорошо обрабатываемые материалы, используемые во многих бытовых и технических приложениях. CAB имеет более высокую стабильность формы, чем CA, и используется в автомобильных аксессуарах и трубах. Наконец, полибутилен (ПБ или PB) относится к семейству полиолефинов (как и ПЭ с ПП), но используется реже из-за его более высокой цены. Хотя он несильно отличается от PE по жесткости и температуре плавления, он обладает лучшей устойчивостью к растрескиванию под действием ползучести и под воздействием окружающей среды, чем PE и PP, и более высокой прочностью и сопротивлением к разрыву. Его применение в основном ограничивается упаковкой для тяжелых грузов и трубами для горячей воды (например, серия труб Georg Fischer из PB для морских судов).
Типы и виды пластика. Классификация пластиков
Пластмассы классифицируют по разным критериям: химическому составу, жирности, жесткости. Но главным критерием, который объясняет природу полимера, является характер поведения пластика при нагревании. По этому признаку все пластики делятся на три основные группы: термопласты; реактопласты; эластомеры. Принадлежность к той или иной группе определяют форма, величина и расположение макромолекул, наряду с химическим составом.
ТЕРМОПЛАСТЫ (ТЕРМОПЛАСТИЧНЫЕ ПОЛИМЕРЫ, ПЛАСТОМЕРЫ)
Термопласты — это пластмассы, которые при нагреве плавятся, а при охлаждении возвращаются в исходное состояние. Эти пластмассы состоят из линейных или слегка разветвленных молекулярных цепей. При невысоких температурах молекулы располагаются плотно друг возле друга и почти не двигаются, поэтому в этих условиях пластмасса твердая и хрупкая. При небольшом повышении температуры молекулы начинают двигаться, связь между ними ослабевает и пластмасса становится пластичной. Если нагревать пластмассу еще больше, межмолекулярные связи становятся еще слабее и молекулы начинают скользить относительно друг друга — материал переходит в эластичное, вязкотекучее состояние. При понижении температуры и охлаждении весь процесс идет в обратном порядке. Если не допускать перегрева, при котором цепи молекул распадаются и материал разлагается, процесс нагревания и охлаждения можно повторять сколько угодно раз. Это особенность термопластов многократно размягчаться позволяет неоднократно перерабатывать эти пластмассы в те или иные изделия. То есть теоретически, из нескольких тысяч стаканчиков из-под йогурта можно изготовить одно крыло. С точки зрения защиты окружающей среды это очень важно, поскольку последующая переработка или утилизация — большая проблема полимеров. Попав в почву, изделия из пластика разлагаются в течение 100–400 лет! Кроме того, благодаря этим свойствам термопласты хорошо поддаются сварке и пайке. Трещины, изломы и деформации можно легко устранить посредством теплового воздействия. Большинство полимеров, применяемых в автомобилестроении, являются именно термопластами. Используются они для производства различных деталей интерьера и экстерьера автомобиля: панелей, каркасов, бамперов, решеток радиатора, корпусов фонарей и наружных зеркал, колпаков колес и т.д. К термопластам относятся полипропилен (РР), поливинихлорид (PVC), сополимеры акрилонитрила, бутадиена и стирола (ABS), полистирол (PS), поливинилацетат (PVA), полиэтилен (РЕ), полиметилметакрилат (оргстекло) (РММА), полиамид (РА), поликарбонат (PC), полиоксиметилен (РОМ) и другие.
РЕАКТОПЛАСТЫ (ТЕРМОРЕАКТИВНЫЕ ПЛАСТМАССЫ, ДУРОПЛАСТЫ)
Если для термопластов процесс размягчения и отверждения можно повторять многократно, то реактопласты после однократного нагревания (при формовании изделия) переходят в нерастворимое твердое состояние, и при повторном нагревании уже не размягчаются. Происходит необратимое отверждение. В начальном состоянии реактопласты имеют линейную структуру макромолекул, но при нагревании во время производства формового изделия макромолекулы «сшиваются», создавая сетчатую пространственную структуру. Именно благодаря такой структуре тесно сцепленных, «сшитых» молекул, материал получается твердым и неэластичным, и теряет способность повторно переходить в вязкотекучее состояние. Из-за этой особенности термореактивные пластмассы не могут подвергаться повторной переработке. Также их нельзя сваривать и формовать в нагретом состоянии — при перегреве молекулярные цепочки распадаются и материал разрушается. Эти материалы являются достаточно термостойкими, поэтому их используют, например, для производства деталей картера в подкапотном пространстве. Из армированных (например стекловолокном) реактопластов производят крупногабаритные наружные кузовные детали (капоты, крылья, крышки багажников). К группе реактопластов относятся материалы на основе фенол-формальдегидных (PF), карбамидо-формальдегидных (UF), эпоксидных (EP) и полиэфирных смол.
ЭЛАСТОМЕРЫ
Что за материал используется при производстве пластиковых тар. Чем пластики отличаются друг от друга?
Сдать пластик на переработку – это единственный правильный способ его утилизации без причинения вреда здоровью человека, животным и окружающей среде в целом. Из 1 кг переработанного пластика получается 0,8 кг готового к дальнейшей эксплуатации вторсырья.
Описание пластиков, идущих в переработку
1. PET или PETE (код PETE, иногда PET и цифра 1.) — полиэтилентерефталат (пластмасса ПЭТ или ПЭТФ). Что за материал, из которого делают пластиковые бутылки. Они могут выделять в жидкость тяжелые металлы и вещества, влияющие на гормональный баланс человека. ПЭТ — самый часто используемый в мире тип пластмассы. Важно помнить, что он предназначен для ОДНОРАЗОВОГО использования. Если вы в такую бутылку наливаете свою воду, то готовьтесь к тому, что в ваш организм могут попасть некоторые щелочные элементы и слишком большое количество бактерий, который буквально обожают ПЭТы.
3. PVC— поливинилхлорид (пластмасса ПВХ). Вещи из этого материала выделяют по меньшей мере два опасных химиката. Оба оказывают негативное влияние на ваш гормональный баланс. Это мягкий, гибкий пластик, который обычно используется для хранения растительного масла и детских игрушек. Из него же делают блистерные упаковки для бесчисленного множества потребительских товаров. Что за материал используется для обшивки компьютерных кабелей. Из него делают пластиковые трубы и детали для сантехники. PVC относительно невосприимчив к прямым солнечным лучам и погоде, поэтому из него часто еще делают оконные рамы и садовые шланги. Тем не менее эксперты рекомендуют воздержаться от его покупки, если вы можете найти альтернативу. Этот пластик повторно НЕ ПЕРЕРАБАТЫВАЕТСЯ в нашей стране, его использование по меньше мере не экологично.
4. LDPE — полиэтилен низкой плотности высокого давления (пластмасса ПВД). Что за материал используется и при производстве бутылок, и при производстве пластиковых пакетов. Он не выделяет химические вещества в воду, которую хранит. Но безопасен он в случае только с тарой для воды. Пакеты в продуктовом магазине из него лучше не покупать: можете съесть не только то, что купили, но и некоторые весьма и весьма опасные для вашего сердца химикаты.
ПВХ можно отличить по признакам:
— при сгибании на линии сгиба появляется белая полоса;
— бутылки из ПВХ бывают синего или голубого цвета;
— шов на дне бутылки имеет два симметричных наплыва.
Определение вида пластика ( полимера, пластмасса ) по горению с помощью зажигалки
Вид полимера | Характеристики горения | Химическая стойкость | |||
Горючесть | Окраска пламени | Запах продуктов горения | К кислотам | К щелочам | |
ПВД | Горит в пламени и при удалении | Внутри синеватая, без копоти | Горящего парафина | Отличная | Хорошая |
ПНД | Горит в пламени и при удалении | Внутри синеватая, без копоти | Горящего парафина | Отличная | Хорошая |
ПП | Горит в пламени и при удалении | Внутри синеватая, без копоти | Горящего парафина | Отличная | Хорошая |
ПВХ | Трудно воспламеняется и гаснет | Зеленоватая с копотью | Хлористого водорода | Хорошая | Хорошая |
ПС | Загорается и горит вне пламени | Желтоватая с сильной копотью | Сладковатый, неприятный | Отличная | Хорошая |
ПА | Горит и самозатухает | Голубая, желтоватая по краям | Жженого рога или пера | Плохая | Хорошая |
ПК | Трудно воспламеняется и гаснет | Желтоватая с копотью | Жженой бумаги | Хорошая | Плохая |
Внешний вид полимера пластика пластмасса
Вид полимера | Механические признаки | Состояние поверхности на ощупь | Цвет | Прозрачность | Блеск | |||
ПВД | Мягкая, эластичная, стойкая к раздиру | Маслянистая, гладкая | Бесцветная | Прозрачная | Матовая | |||
ПНД | Жестковатая, стойкая к раздиру | Слегка маслянистая, гладкая, слабо шуршащая | Бесцветная | Полупрозрачная | Матовая | |||
ПП | Жестковатая, слегка эластичная, стойкая к раздиру | Сухая, гладкая | Бесцветная | Прозрачная или полупрозрачная | Средний | |||
ПВХ | Жестковатая, стойкая к раздиру | Сухая, гладкая | Бесцветная | Прозрачная | Средний | |||
ПС | Жесткая, стойкая к раздиру | Сухая, гладкая, сильно шуршащая | Бесцветная | Прозрачная | Высокий | |||
ПА | Жесткая, слабо стойкая к раздиру | Сухая, гладкая | Бесцветная или светло-желтая | Полупрозрачная | Слабый | |||
ПК | Жесткая, слабо стойкая к раздиру | Сухая, гладкая, сильно шуршащая | Бесцветная, с желтоватым или голубоватым оттенком | Высоко-прозрачная | Высокий |
Физико-механические характеристики полимера пластмасса
Вид полимера | Физико-механические характеристики при 20°C | ||||||
Плотность, кг/м 3 | Прочность при разрыве, МПа | Относит-ое удлинение при разрыве,% | Прониц-мость по водяным парам, г/м 2 за 24 часа | Прониц-мость по кислороду, см 3 /(м 2 хатм) за 24 часа | Прониц-мость по CO2, см 3 /(м 2 хатм) за 24 часа | Температура плавления, °C | |
ПВД | 910-930 | 10-16 | 150-600 | 15-20 | 6500-8500 | 30000-40000 | 102-105 |
ПНД | 940-960 | 20-32 | 400-800 | 4-6 | 1600-2000 | 8000-10000 | 125-138 |
ПП | 900-920 | 30-35 | 200-800 | 10-20 | 300-400 | 9000-11000 | 165-170 |
ПВХ | 1370-1420 | 47-53 | 30-100 | 30-40 | 150-350 | 450-1000 | 150-200 |
ПС | 1050-1100 | 60-70 | 18-22 | 50-150 | 4500-6000 | 12000-14000 | 170-180 |
ПА | 1100-1150 | 50-70 | 200-300 | 40-80 | 400-600 | 1600-2000 | 220-230 |
ПК | 1200 | 62-74 | 20-80 | 70-100 | 4000-5000 | 25000-30000 | 225-245 |
Что означает цифра в треугольничке как штамп на пластиковой бутылке.
Как определить ПЭВД (полиэтилен высокого давления, низкой плотности). Горит синеватым, светящимся пламенем с оплавлением и горящими потеками полимера. При горении становится прозрачным, это свойство сохраняется длительное время после гашения пламени. Горит без копоти. Горящие капли, при падении с достаточной высоты (около полутора метров), издают характерный звук. При остывании, капли полимера похожи на застывший парафин, очень мягкие, при растирании между пальцами- жирны на ощупь. Дым потухшего полиэтилена имеет запах парафина. Плотность ПЭВД: 0,91-0,92 г/см. куб.
Как определить ПЭНД (полиэтилен низкого давления, высокой плотности). Более жесткий и плотный чем ПЭВД, хрупок. Проба на горение – аналогична ПЭВД. Плотность: 0,94-0,95 г/см. куб.
Полистирол. При сгибании полоски полистирола, легко гнется, потом резко ломается с характерным треском. На изломе наблюдается мелкозернистая структура.Горит ярким, сильно коптящим пламенем (хлопья копоти тонкими паутинками взмывают вверх!). Запах сладковатый, цветочный.Полистирол хорошо растворяется в органических растворителях (стирол, ацетон, бензол).
Как определить Поливинилхлорид (ПВХ). Эластичен. Трудногорюч (при удалении из пламени самозатухает). При горении сильно коптит, в основании пламени можно наблюдать яркое голубовато-зеленое свечение. Очень резкий, острый запах дыма. При сгорании образуется черное, углеподобное вещество (легко растирается между пальцами в сажу).Растворим в четыреххлористом углероде, дихлорэтане. Плотность: 1,38-1,45 г/см. куб.
Как определить Полиакрилат (органическое стекло). Прозрачный, хрупкий материал. Горит синевато-светящимся пламенем с легким потрескиванием. У дыма острый фруктовый запах (эфира). Легко растворяется в дихлорэтане.
Как определить Полиамид (ПА). Материал имеет отличную масло-бензостойкость и стойкость к углеводородным продуктам, которые обеспечивают широкое применение ПА в автомобильной и нефтедобывающей промышленности (изготовление шестерен, искуственных волокон…). Полиамид отличается сравнительно высоким влагопоглощением, которое ограничивает его применение во влажных средах для изготовления ответственных изделий. Горит голубоватым пламенем. При горении разбухает, “пшикает”, образует горящие потеки. Дым с запахом паленого волоса. Застывшие капли очень твердые и хрупкие. Полиамиды растворимы в растворе фенола, концентрированной серной кислоте. Плотность: 1,1-1,13 г/см. куб. Тонет в воде.
Как определить Пластик АВС. Все свойства по горению аналогичны полистиролу. От полистирола достаточно сложно отличить. Пластик АВС более прочный, жесткий и вязкий. В отличие от полистирола более устойчив к бензину.
Как определить Фторопласт-3. Применяется в виде суспензий для нанесения антикоррозийных покрытий. Не горюч, при сильном нагревании обугливается. При удалении из пламени сразу затухает. Плотность: 2,09-2,16 г/см.куб.
Как определить Фторопласт-4. Безпористый материал белого цвета, слегка просвечивающийся, с гладкой, скользкой поверхностью. Один из лучших диэлектриков! Не горюч, при сильном нагревании плавится. Не растворяется практически ни в одном растворителе. Самый стойкий из всех известных материалов. Плотность: 2,12-2,28 г/см.куб. (зависит от степени кристалличности – 40-89%).
Физико-химические свойства отходов пластмасс по отношению к кислотам
Наименование отхода | Воздействующие факторы | |||||
H2SO4(к) Хол. | H2SO4(к) Кипяч. | HNO3 (к) Хол. | HNO3 (к) Кипяч. | HCl (к) Хол. | HCl (к) Кипяч. | |
Бутылки из-под кока-колы | Без изменений | Приобрели окраску Сворачиваются | Без изменений | Без изменений | Без изменений | Образцы свернулись |
Пластиковые пакеты | Без изменений | Практически растворились | Без изменений | Без изменений | Без изменений | Образцы растворились |
Наименование отхода | Воздействующие факторы | ||||||
Н2О Кипяч. | NаOН 6 н Хол. | NаOН 6 н Горяч. | КОН 0,1 н Хол | КОН 6 н Хол. | КОН 6 н Горяч. | Са(ОН)2 Горяч. | |
Бутылки из-под кока-колы | Без изменений | Сверну лись | — | ||||
Пластиковые пакеты | Без изменений | Сверну лись | Свернулись |
ЛЮБОЙ пластик выделяет в содержимое бутылки химикаты разной степени опасности.