что лучше припой или термопаста на процессоре

Зачем скальпируют процессоры? Почему Intel сразу не ставит хорошую термопасту?

что лучше припой или термопаста на процессоре. Смотреть фото что лучше припой или термопаста на процессоре. Смотреть картинку что лучше припой или термопаста на процессоре. Картинка про что лучше припой или термопаста на процессоре. Фото что лучше припой или термопаста на процессоре

Давным-давно, в далёкой галактике.
Хм, нет, в этой галактике. И не так уж давно, 199х, начало 200х годов процессоры поставлялись вообще без крышки, кулер устанавливался напрямую на кристалл CPU. Но бывало кристалл при неаккуратном воздействии повреждался. К тому же, в эти года был огромный прогресс производительности CPU, но и весьма заметный рост потребления энергии, что вело к увеличению массы кулера и повышению риска повредить кристалл.
В итоге (не помню, кто первый), начали кристалл прикрывать теплораспределительной (и заодно защитной) крышкой. Одновременно с этим эту крышку начали снимать для разгона. Т.к. лишний посредник, немного ухудшает теплопроводность. К тому же, бывали случаи не совсем брака, кривая (выпуклая или вогнутая) крышка, кулер прижимался неплотно, что ухудшало охлаждение. Бывало, что неравномерно была припаяна сама крышка (а в те времена использовался именно припой) и ядро грелось сильнее, чем одноклассники. Иногда крышку снимали и вообще не ставили обратно. Иногда снимали, меняли термоинтерфейс и ставили крышку обратно. Штука рискованная (припой держится весьма прочно, повредить кристалл просто), давала всего несколько градусов выигрыша, поэтому не слишком популярная.

Ни один производитель в мире не откажется от того, чтобы выпустить свою продукцию лучше, чем у конкурентов, особенно если это экономически оправдано

Источник

Core i5 10400 припой или термопаста?

В 10-м поколении процессоров Intel наконец решили изменить свой подход к выбору термоинтерфейса под крышкой процессора, и добавили в “народные” CPU под крышку припой. Но сделали они это не со всеми процессорами, видимо под видом эксперимента.

В этой статье мы попробуем разобраться чем припой лучше термопасты, и как купить процессор i5 10400 или i5 10400f именно с припоем.

Итак, начнём с того, что в самом начале использования разница между припоем и термопастой будет несущественна, так как теплопроводные свойства припоя на процессорах с теплопакетом 65Вт не будут опережать свойства термопасты.

Но с течением времени термопаста под крышкой начнёт засыхать, теряя свои теплопроводные свойства, и процессор может начать сильно греться и снижать частоты, а следовательно и производительность, даже в не очень требовательных задачах. Решением этой проблемы служит метод скальпирования процессоров – аккуратное снятие крышки и последующая замена термопасты на свежую, или даже её замена на жидкий металл, что вернёт CPU в первоначальную форму.

Однако не все пользователи ПК готовы на подобные кардинальные действия. Многим будет гораздо проще купить процессор сразу с припоем, у которого нет потери теплопроводящих свойств, и заменить процессор только по мере технологического и морального устаревания, как это делают счастливые владельцы большинства CPU из линейки Ryzen.

Теперь стало понятно, что лучше будет немного заморочиться перед покупкой с выбором “правильной” версии процессора с припоем, чем еще сильнее заморочиться после снижения производительности из-за деградации термопасты.

Давайте выясним, как в магазине определить процессор Intel Core i5 10400 или 10400f с припоем, и как визуально их можно отличить от версии с термопастой.

Первым делом смотрим на крышку процессора, если у процессора под ней нанесён припой, то крышка будет без изгибов сверху и снизу. Технология нанесения припоя отличается от технологии нанесения термопасты, поэтому конструктивно между ними также есть разница.

Также можно дополнительно проверить тип термоинтерфейса с помощью чтения кодов на крышке процессора.

На i5 10400 с термопастой серийный номер должен быть SRH3C (степпинг G1).

На i5 10400 с припоем серийный номер – SRH78 (степпинг Q0).

На i5 10400f с термопастой серийный номер должен быть SRH3D (степпинг G1).

На i5 10400f с припоем серийный номер – SRH79 (степпинг Q0).

Второй способ определения можно использовать при заказе процессора в каком-либо интернет-магазине, объяснить продавцу разницу в крышках процессора будет проблематично, а вот серийный номер при отправке вполне могут сравнить с тем, который вы попросили в своём заказе.

Сейчас купить Intel Core i5 10400 можно выгодно по этим ссылкам:

что лучше припой или термопаста на процессоре. Смотреть фото что лучше припой или термопаста на процессоре. Смотреть картинку что лучше припой или термопаста на процессоре. Картинка про что лучше припой или термопаста на процессоре. Фото что лучше припой или термопаста на процессоре

Процессор с припоем в версии BOX (с гарантией 3 года, коробкой и кулером):

Процессор с термопастой в версии BOX (с гарантией 3 года, коробкой и кулером):

что лучше припой или термопаста на процессоре. Смотреть фото что лучше припой или термопаста на процессоре. Смотреть картинку что лучше припой или термопаста на процессоре. Картинка про что лучше припой или термопаста на процессоре. Фото что лучше припой или термопаста на процессоре

Процессор с припоем в версии OEM (с гарантией 1 год, без коробки и кулера):

Процессор с термопастой в версии OEM (с гарантией 1 год, без коробки и кулера):

Если же вам некритично отсутствие встроенного видеоядра, то можете приобрести Intel Core i5 10400f, по выгодным ценам:

что лучше припой или термопаста на процессоре. Смотреть фото что лучше припой или термопаста на процессоре. Смотреть картинку что лучше припой или термопаста на процессоре. Картинка про что лучше припой или термопаста на процессоре. Фото что лучше припой или термопаста на процессоре

Процессор с припоем в версии BOX (с гарантией 3 года, коробкой и кулером):

Процессор с термопастой в версии BOX (с гарантией 3 года, коробкой и кулером):

что лучше припой или термопаста на процессоре. Смотреть фото что лучше припой или термопаста на процессоре. Смотреть картинку что лучше припой или термопаста на процессоре. Картинка про что лучше припой или термопаста на процессоре. Фото что лучше припой или термопаста на процессоре

Процессор с припоем в версии OEM (с гарантией 1 год, без коробки и кулера):

Процессор с термопастой в версии OEM (с гарантией 1 год, без коробки и кулера):

Источник

реклама

Итак, так как я стал относительно счастливым обладателем процессора Intel Core i5-10400F, пусть и с пластичным термоинтерфейсом под крышкой, мне пришла идея прогнать этот процессор в некоторых стресс-тестах, чтобы посмотреть на реальные температуры процессора с маркировкой SRH3D, и заодно выяснить, так ли страшна термопаста под крышкой в новых процессорах Intel Comet Lake-S, тем более, в тех, которые даже не поддаются разгону.

Итак, как вы можете видеть, маркировка SRH3D действительно соответствует степпингу G1, процессоры с которым действительно обладают пластичным термоинтерфейсом.

реклама

Давайте же выясним, стоит ли волноваться и менять процессор на иной, или вовсе отказываться от покупки, если вам все же попался процессор с «неправильной» маркировкой.

Перво-наперво ознакомимся с моим конфигом, на котором будет проводиться тестирование.

Более подробно я расскажу о своем уже не «тестовом» конфиге в следующих статьях, почему я ушел с AMD, а также о своих впечатлениях от системы на Intel и разгоне памяти, ну и смену кулера на бюджетную башню мы также обсудим.

реклама

А сейчас вернемся к тестированию процессора с пластичным термоинтерфейсом, и предлагаю начать с того, что мы выясним температуру процессора в простое:

Согласно OCCT v6.1.1, в данный момент температура по ядрам распределилась от 27 до 30 градусов, абсолютные максимумы же были в пределах 37-44 градусов, что связано с тем, что я не фиксировал частоту и процессор находился в полном «стоке».

Далее предлагаю «прогнать» 15-минутный тест Linpack и посмотреть на температуры процессора, его частоту и тепловыделение.

реклама

За 15 минут тестирование в Linpack процессор Intel Core i5-10400F (SRH3D) прогрелся по абсолютным температурным максимумам от 63 до 67 градусов по разным ядрам. Процессор держал частоту в 4 GHz, а его энергопотребление местами выходило из заявленного теплопакета в 65 ватт.

Одним тестом нам не обойтись, поэтому предлагаю протестировать процессор в стресс-тесте OCCT с использованием AVX2 инструкций и малым набором данных для лучшего прогрева ядер.

В начале тестирования процессор вышел из своего теплопакета и его TDP составил 92 ватта, на протяжении всего остального тестового отрезка процессор находился в рамках теплопакета 65 ватт.

При тестировании с AVX2 инструкциями, i5-10400F сбрасывает частоту до 2.8 GHz с частыми «пиками» на графике.

Абсолютные максимумы по температурам были в значениях 64-67 градусов по ядрам при тепловыделении в 92 ватта, на протяжении же всего остального тестового отрезка температура по ядрам была ниже шестидесяти градусов и держалась в пределах 53-57 градусов по разным ядрам. Я не вижу никакого смысла гонять стресс тест процессора без разгона больше 10 минут. Быть может, за час тестирования температуры вырастут еще на пару градусов, но при этом процессор абсолютно холодный.

Данные тесты же я считаю слишком тяжелыми. Абсолютному большинству покупателей этого процессора будет достаточно «прогнать» процессор в тесте стабильности системы AIDA64.

Во время 15-минутного тестирования процессора в Aida64, температуры Intel Core i5-10400F (SRH3D) находились в диапазоне 50-59 градусов по разным ядрам.

Тепловыделение процессора находилось в рамках заявленного теплопакета и держалось около 60 ватт.

В играх же, естественно, температура процессора будет меньше, чем во время любого из проведенных стресс-тестов. А частота процессора может достигать даже 4.2 GHz, все зависит от игры.

Итак, давайте же теперь еще раз выясним, как определить процессор с припоем и купить «правильный» процессор.

Кроме процессоров с литерой K, «благородный припой» также используется в младших процессорах: i5-10400 и i5-10400F, отличия между которыми сводятся к наличию и отсутствию встроенной графики. Итак, процессоры со степпингом Q0 имеют припой, так как являются отбраковкой от старших процессоров Intel с десятью ядрами. Степпинг процессора можно определить по маркировке, процессор с припоем будет иметь маркировку SRH79 для i5-10400F и SRH78 для i5-10400. Если вы по какой-то причине не смогли разглядеть маркировку на крышке процессора, наличие припоя в процессорах i5 также определяется по компонентам, расположенным на задней части подложки процессоров.

Процессоры с термопастой и, соответственно, степпингом G1 будут иметь сплошную линию мелких компонентов в центре. Нужный же вам процессор будет иметь как бы разделенную линию мелких компонентов, как продемонстрировано на картинке:

Итак, теперь вернемся к самому главному вопросу: стоит ли «охотиться» за процессорами i5 с припоем и отказываться от «неправильных» процессоров со степпингом G1?

Но а если вам достался процессор с припоем и, соответственно, степпингом Q0, то можете считать, что вы «выиграли в лотерею» и получили действительно уникальный процессор.

Источник

Припой под крышкой. Сделай сам

Все мы знаем, что основные производители центральных процессоров фирмы Intel и AMD на своих бюджетных и не очень моделях иногда применяют более дешёвый термоинтерфейс. Рядовой пользователь обычно не обращает внимание на термопасту под теплораспределительной крышкой, да и не задумывается об этом.

реклама

Для любителей оверклокинга, когда каждый градус на счету, этот момент может оказаться весьма критичным. Лучшим термоинтерфейсом считается припой, наносимый в заводских условиях в процессе производства.

Для желающих улучшить свой процессор в домашних условиях, в качестве термоинтерфейса рекомендуется так называемый «жидкий металл». Однако у меня родилась идея попробовать воспроизвести заводскую технологию пайки в кустарных условиях и посмотреть, что из этого получится.

Так как эксперимент был заведомо рискованный, в качестве подопытного образца я выбрал наиболее дешёвый из доступных вариантов Athlon 200ge. TDP процессора всего 35 Вт и проводить для него подобную процедуру совершенно бессмысленно. Поэтому данный эксперимент был лишь этапом подготовки к полноценному эксперименту над 2400G, с его последующим комплексным тестированием. Здесь же я поставил задачу просто проверить, возможно ли это, и какие подводные камни могут при этом возникнуть.

реклама

Процедура скальпирования стандартная. Я немного надрезал лезвием герметик, после чего зажал процессор под углом в тиски и без особого труда снял теплораспределительную крышку и вот пожалуйста результат.

реклама

Всё осталось целым

Сразу отмечу, что термопаста под крышкой была уже довольно сухая, вероятно подобный термоинтерфейс деградирует со временем, что может проявиться на более мощных моделях ЦП при их длительном использовании.

Я немного почистил герметик с поверхности платы, без особого фанатизма, так как приклеивать обратно на герметик не собирался.

Теперь сама операция

реклама

В итоге для начала я остановился на втором варианте, однако применять его для производительных ЦП совершенно не стоит, так как ваш новый термоинтерфейс вполне может расплавиться в процессе эксплуатации.

Я использовал паяльную станцию Магистр Ц20-М с возможностью регулирования температуры жала, а также термостолик Магистр Ц20-Т-1.0, также с возможностью регулирования температуры.

Оборудование для эксперимента

Сначала я занялся термораспределительной крышкой, которая представляет собой никелированную медную пластину с выпуклостью в месте контакта с кристаллом. Облуживание проводилось при температуре жала паяльника 135 °C.

В итоге у меня получилось

Облудить теплораспределительную крышку у меня сразу не получилось. Адгезии припоя к ней совершенно нет. Тогда я использовал наиболее доступный флюс (самодельный), который представлял собой сосновую канифоль, растворённую в медицинском спирте. После применения флюса я смог облудить площадку.

После я занялся кристаллом

Не очень аккуратно получилось

Тут в общем история повторилась. Кремний совершенно не смачивался припоем, опять помог самопальный флюс.

Скажу сразу, что у меня получилось нормально припаять только с пятой попытки, до этого я провёл один краштест, сорвав припаянную крышку с кристалла, чтобы посмотреть пятно смачивания.

С одной стороны, в месте где припой хорошо смачивал кристалл, я сорвал припой вместе с тонким слоем кремния, это было видно визуально. То есть добиться лучшей адгезии уже, наверное, нельзя.

Другое дело, что несмотря на то, что я предварительно облудил и крышку и кристалл, реальное смачивание кристалла явно не превышало и половины площади, а может быть и меньше, было большое количество пустот, что очень плохо.

Теперь сама процедура пайки

Я положил термораспределительную крышку на паяльный столик, выставив его температуру 135 °C, сверху я положил вверх ногами кристалл с основанием, придавив сверху грузом (примерно 300 гр).

Я выдерживал всё при этой температуре где-то 5 минут, чтобы всё гарантированно расплавилось, после чего понизил температуру столика до 50 °C и ждал, пока всё остынет естественным образом.

Самое сложное во всём этом оказалось ровно выставить термораспределительную крышку относительно кристалла, тем более что выпуклость под кристалл расположена не точно по центру, и крышка всё время заваливалась, пришлось сориентировать груз таким образом, чтобы его центр массы компенсировал заваливание крышки вбок. Но и выставить габариты по перевёрнутой крышке оказалось довольно непросто. В итоге всё получилось с пятой попытки.

Теперь было необходимо приклеить крышку обратно. В силу ряда причин я решил не использовать для этого герметик, а воспользовался эпоксидным клеем, состоящим из смеси смол ПО-300/ЭД-20 и оксида титана. Я взял шприц с тонкой иглой и аккуратно замазал клей в щель под крышку и немного примазал извне, для прочности. Сушил на столике два часа при температуре 70 °C.

В общем вещь получилась очень дубовая, сорвать крышку процессора ещё раз, так чтобы сохранить целостность конструкции, у меня уже бы не получилось, зато я абсолютно гарантировал механическую целостность нового термоинтерфейса.

Что же получилось?

Главная задача состояла в том:

а. это должно было просто заработать;

б. необходимо было выявить все подводные камни технологии кустарной пайки.

Собственно, гонять 35-ватный процессор в различных тестах особенно смысла нет (на моей материнской плате множитель у него заблокирован), хотя даже в простейших тестах, которые я проводил для себя до и после, никакой особой разницы я не заметил, буквально градус-другой, хотя всё это могло стать следствием случайного стечения обстоятельств.

Отмечу, что если мой образец ранее спокойно работал с оперативной памятью на частоте 3533 МГц, то после данной процедуры он потерял возможность стабильной работы при сохранении ранее существующих параметров, и мне пришлось откатиться на 3466 МГц. Это как бы тоже повод насторожиться и хорошенько всё переосмыслить.

Почему же самопальный припой под крышкой не принёс кардинального преимущества перед засохшей термопастой?

Ответ прост, я не смог добиться большой площади смачивания кристалла припоем, на термораспределительной крышке тоже, вероятно, есть пустоты. Это при том, что результаты пайки совершенно невозможно проверить, я спаял, заклеили крышку и только после этого узнал: повезло или нет. Ну и TDP устройства всего 35 Вт.

В общем технология вполне реализуемая в кустарных условиях, но ещё требует определённой доработки в плане реализации, и пока лучше использовать для этих целей традиционный «Жидкий металл».

Источник

Припой под крышкой. Сделай сам

Все мы знаем, что основные производители центральных процессоров фирмы Intel и AMD на своих бюджетных и не очень моделях иногда применяют более дешёвый термоинтерфейс. Рядовой пользователь обычно не обращает внимание на термопасту под теплораспределительной крышкой, да и не задумывается об этом.

реклама

Для любителей оверклокинга, когда каждый градус на счету, этот момент может оказаться весьма критичным. Лучшим термоинтерфейсом считается припой, наносимый в заводских условиях в процессе производства.

Для желающих улучшить свой процессор в домашних условиях, в качестве термоинтерфейса рекомендуется так называемый «жидкий металл». Однако у меня родилась идея попробовать воспроизвести заводскую технологию пайки в кустарных условиях и посмотреть, что из этого получится.

Так как эксперимент был заведомо рискованный, в качестве подопытного образца я выбрал наиболее дешёвый из доступных вариантов Athlon 200ge. TDP процессора всего 35 Вт и проводить для него подобную процедуру совершенно бессмысленно. Поэтому данный эксперимент был лишь этапом подготовки к полноценному эксперименту над 2400G, с его последующим комплексным тестированием. Здесь же я поставил задачу просто проверить, возможно ли это, и какие подводные камни могут при этом возникнуть.

реклама

Процедура скальпирования стандартная. Я немного надрезал лезвием герметик, после чего зажал процессор под углом в тиски и без особого труда снял теплораспределительную крышку и вот пожалуйста результат.

реклама

Всё осталось целым

Сразу отмечу, что термопаста под крышкой была уже довольно сухая, вероятно подобный термоинтерфейс деградирует со временем, что может проявиться на более мощных моделях ЦП при их длительном использовании.

Я немного почистил герметик с поверхности платы, без особого фанатизма, так как приклеивать обратно на герметик не собирался.

Теперь сама операция

реклама

В итоге для начала я остановился на втором варианте, однако применять его для производительных ЦП совершенно не стоит, так как ваш новый термоинтерфейс вполне может расплавиться в процессе эксплуатации.

Я использовал паяльную станцию Магистр Ц20-М с возможностью регулирования температуры жала, а также термостолик Магистр Ц20-Т-1.0, также с возможностью регулирования температуры.

Оборудование для эксперимента

Сначала я занялся термораспределительной крышкой, которая представляет собой никелированную медную пластину с выпуклостью в месте контакта с кристаллом. Облуживание проводилось при температуре жала паяльника 135 °C.

В итоге у меня получилось

Облудить теплораспределительную крышку у меня сразу не получилось. Адгезии припоя к ней совершенно нет. Тогда я использовал наиболее доступный флюс (самодельный), который представлял собой сосновую канифоль, растворённую в медицинском спирте. После применения флюса я смог облудить площадку.

После я занялся кристаллом

Не очень аккуратно получилось

Тут в общем история повторилась. Кремний совершенно не смачивался припоем, опять помог самопальный флюс.

Скажу сразу, что у меня получилось нормально припаять только с пятой попытки, до этого я провёл один краштест, сорвав припаянную крышку с кристалла, чтобы посмотреть пятно смачивания.

С одной стороны, в месте где припой хорошо смачивал кристалл, я сорвал припой вместе с тонким слоем кремния, это было видно визуально. То есть добиться лучшей адгезии уже, наверное, нельзя.

Другое дело, что несмотря на то, что я предварительно облудил и крышку и кристалл, реальное смачивание кристалла явно не превышало и половины площади, а может быть и меньше, было большое количество пустот, что очень плохо.

Теперь сама процедура пайки

Я положил термораспределительную крышку на паяльный столик, выставив его температуру 135 °C, сверху я положил вверх ногами кристалл с основанием, придавив сверху грузом (примерно 300 гр).

Я выдерживал всё при этой температуре где-то 5 минут, чтобы всё гарантированно расплавилось, после чего понизил температуру столика до 50 °C и ждал, пока всё остынет естественным образом.

Самое сложное во всём этом оказалось ровно выставить термораспределительную крышку относительно кристалла, тем более что выпуклость под кристалл расположена не точно по центру, и крышка всё время заваливалась, пришлось сориентировать груз таким образом, чтобы его центр массы компенсировал заваливание крышки вбок. Но и выставить габариты по перевёрнутой крышке оказалось довольно непросто. В итоге всё получилось с пятой попытки.

Теперь было необходимо приклеить крышку обратно. В силу ряда причин я решил не использовать для этого герметик, а воспользовался эпоксидным клеем, состоящим из смеси смол ПО-300/ЭД-20 и оксида титана. Я взял шприц с тонкой иглой и аккуратно замазал клей в щель под крышку и немного примазал извне, для прочности. Сушил на столике два часа при температуре 70 °C.

В общем вещь получилась очень дубовая, сорвать крышку процессора ещё раз, так чтобы сохранить целостность конструкции, у меня уже бы не получилось, зато я абсолютно гарантировал механическую целостность нового термоинтерфейса.

Что же получилось?

Главная задача состояла в том:

а. это должно было просто заработать;

б. необходимо было выявить все подводные камни технологии кустарной пайки.

Собственно, гонять 35-ватный процессор в различных тестах особенно смысла нет (на моей материнской плате множитель у него заблокирован), хотя даже в простейших тестах, которые я проводил для себя до и после, никакой особой разницы я не заметил, буквально градус-другой, хотя всё это могло стать следствием случайного стечения обстоятельств.

Отмечу, что если мой образец ранее спокойно работал с оперативной памятью на частоте 3533 МГц, то после данной процедуры он потерял возможность стабильной работы при сохранении ранее существующих параметров, и мне пришлось откатиться на 3466 МГц. Это как бы тоже повод насторожиться и хорошенько всё переосмыслить.

Почему же самопальный припой под крышкой не принёс кардинального преимущества перед засохшей термопастой?

Ответ прост, я не смог добиться большой площади смачивания кристалла припоем, на термораспределительной крышке тоже, вероятно, есть пустоты. Это при том, что результаты пайки совершенно невозможно проверить, я спаял, заклеили крышку и только после этого узнал: повезло или нет. Ну и TDP устройства всего 35 Вт.

В общем технология вполне реализуемая в кустарных условиях, но ещё требует определённой доработки в плане реализации, и пока лучше использовать для этих целей традиционный «Жидкий металл».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *