Машина электрическая обратимая двигатель генератор принцип работы
Обратимость электрических машин
Основные положения принципа обратимости электрических машин
Таким образом, мы получим электрический двигатель, который, в отличие от генератора преобразует электрическую энергию в механическую.
По закону Ленца, индуцированный ток всегда имеет такое направление, при котором возникающая электромагнитная сила стремится препятствовать тому изменению (движению), благодаря которому индуцируется ток.
Рис. 1. Простейший генератор переменного тока
Рис. 2. Простейший генератор постоянного тока
Рис. 3. Генератор дает переменную э.д.с., если концы рамки подключены к кольцам. Если же они подключены к полукольцам (пластинам коллектора), то ток в цепи будет пульсирующим.
На основании упомянутых выше законов и принципа работы простейших электрических машин можем сформулировать следующие основные положения энергопреобразования:
1) непосредственное взаимообратное преобразование механической и электрической энергии в индуктивных электрических машинах возможно лишь тогда, когда последняя является энергией переменного тока,
2) для такого энергопреобразования необходим электрический контур с изменяющейся индуктивностью (в нашем случае это поворачивающийся в магнитном поле виток),
4) любая электрическая машина энергетически обратима, т. е. принципиально равноценно может работать и как генератор, и как двигатель,
5) поскольку для проявления закона электромагнитной индукции необходимо лишь относительное перемещение проводника и магнитного поля, то любая электрическая машина кинематически обратима, т. е. у нее может вращаться или якорь или индуктор.
Возможно ли использование двигателя вместо генератора на практике
По закону Э. X. Ленца индуктированный ток в замкнутом электрическом контуре всегда имеет такое направление, при котором возникающая электромагнитная сила стремится препятствовать тому изменению (движению), благодаря которому индуктируется электрический ток. На этом основании всякая индуктивная электрическая машина «энергетически обратима», т. е. может, принципиально, работать как генератором, так и двигателем.
Тем не менее, при необходимо знать, для какого режима работы электричсекая машина предназначается, — для генераторного или двигательного. Это объясняется тем, что на практике к генератору и к двигателю предъявляются определенные требования, которые не всегда совместимы, а потому может оказаться, что электрическая машина, выполненная как генератор, не будет в состоянии удовлетворительно работать в качестве двигателя, и наоборот.
Поэтому всякая машина должна иметь на своем «заводском щитке» указание, для какого режима работы она предназначается выпустившим ее заводом. Кроме того, нужно отметить, что ряд типов электрических машин возник и применяется только в качестве генератора, либо только в качестве двигателя.
Кинематическая обратимость электрической машины
С точки зрения осуществления в электрической машине энергопреобразования важно лишь взаимоотносительное движение ее двух основных органов, вытекает кинематическая обратимость электрической машины.
Это значит, что если ротор электрической машины застопорить, а статору дать возможность вращаться, то он придет во вращение, при этом будет вращаться, при неизменных электрических соединениях, в сторону, обратную той, в которую вращался ротор, превращенный в статор (это следует из законов механики).
Очевидно, что для придания статору возможности вращения его придется снабдить соответствующими подшипниками и, кроме того, скользящими электрическими контактами, чтобы сохранить подачу электрической энергии к статору, если таковая имела место до переделки. Очевидно, что при кинематическом обращении внутрироторной электрической машины получим внешнероторную электрическую машину, и наоборот.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Машина электрическая обратимая двигатель генератор принцип работы
Электрические машины постоянного тока, как и машины переменного тока, обратимы, т. е. они могут работать как генераторы и как двигатели. Переход генератора в режим работы двигателя можно пояснить следующим образом.
Если генератор включить в сеть постоянного тока, то в обмотках якоря и электромагнитов установится ток, при этом электромагниты создадут постоянное магнитное поле и на каждый проводник обмотки якоря с током начнет действовать сила, стремящаяся повернуть якорь в сторону действия силы (рис. 6-12, а). Таким образом, взаимодействие магнитного поля якоря с полем обмотки возбуждения приводит якорь во вращение.
Применяя правило левой руки, можно легко заметить, что при изменении направления тока только в якоре (рис. 6-12, б) или только в обмотке возбуждения (рис. 6-12, в) направление вращения якоря изменяется на противоположное, а одновременное изменение направления тока в обеих обмотках не изменяет направления вращения якоря (рис. 6-12, г.)
Электродвигатели конструктивно не отличаются от генераторов постоянного тока, т. е. они имеют точно такое же устройство (за исключением немногих типов двигателей специального назначения).
Рассмотрим некоторые особенности двигателей. Если двигатель постоянного тока с сопротивлением обмотки якоря включить в сеть с напряжением U, то в момент пуска в якоре установится ток
значение которого может быть определено по закону Ома:
Так как сопротивление обмотки якоря мощных двигателей составляет лишь десятые и сотые доли ома, а рабочее напряжение — порядка сотен вольт, то пусковой ток может составить сотни и тысячи ампер, превышая номинальное значение тока для данного двигателя в 10—30 раз. Такой ток не только не желателен, но и опасен для двигателя, так как может разрушиться коллектор и сгореть обмотка двигателя. Очевидно, что ограничение пускового тока можно осуществить включением пускового реостата в цепь якоря. Тогда пусковой ток уменьшится и будет равен
Сопротивление пускового реостата выбирают таким, чтобы пусковой ток не превышал номинальный более чем в 1,1-1,5 раза.
В результате взаимодействия якоря с полем полюсов якорь придет во вращение, обмотка его будет вращаться в магнитном поле и в ней индуцируется ЭДС самоиндукции S, полярность которой противоположна полярности напряжения сети. Эта ЭДС
вызывает ослабление тока в якоре, а ее значение пропорционально скорости вращения якоря, т. е. по мере разгона двигателя ток будет уменьшаться и пусковой реостат можно выводить.
Иначе говоря, у нормально вращающегося двигателя основная часть подводимого напряжения уравновешивается ЭДС самоиндукции. Ток в якоре при выведенном пусковом реостате можно выразить уравнением
Для выяснения роли ЭДС самоиндукции в преобразовании электрической энергии в механическую в двигателе постоянного тока уравнение (6.19) представим в следующем виде:
Получили уравнение электрического равновесия, согласно которому приложенное к зажимам двигателя напряжение сети U уравновешивается суммой ЭДС самоиндукции 8 и падением напряжения на сопротивлении якоря
Умножив обе части уравнения (6.20) на получим:
В этом новом уравнении (6.21) левая часть представляет собой не что иное, как электрическую мощность, потребляемую двигателем из сети, а последний член правой части
мощность, поглощаемую сопротивлением якоря
(электрические потери в якоре). Очевидно, что член
представляет собой электрическую мощность, преобразуемую в другой вид энергии. Следовательно,
и есть та часть потребляемой из сети электрической мощности» которая преобразуется в механическую (включая механические потери).
Таким образом, ЭДС самоиндукции в двигателе постоянного тока влияет на преобразование потребляемой из сети электрической энергии в механическую. При неподвижном якоре преобразование (полезное) отсутствует
хотя потребляемая из сети мощность
максимальна. Наоборот, при номинальном режиме работы двигателя
потребляемая из сети мощность
уменьшается, а преобразованная мощность становится отличной от нуля
Для получения формулы скорости двигателя подставим в уравнение (6.19) значение ЭДС из соотношения (6.7). После преобразования получим:
Учитывая, что падение напряжения на сопротивлении якоря значительно меньше напряжения сети U, можно считать, что скорость вращения двигателя практически прямо пропорциональна
подводимому напряжению U и обратно пропорциональна магнитному потоку Ф. Отсюда следует, что регулирование скорости вращения двигателя можно осуществлять изменением сопротивления цепи якоря (при постоянном напряжении сети) либо изменением магнитного потока. На первый взгляд может показаться странным, что увеличение магнитного потока двигателя снижает скорость его вращения (и наоборот).
Действительно, если при установившемся токе в якоре и скорости вращения уменьшить магнитный поток, то ЭДС самоиндукции уменьшится и электрическое равновесие (6.20) нарушится. Для восстановления этого равновесия при меньшем магнитном потоке якорь будет вращаться быстрее, так как ЭДС самоиндукции пропорциональна его скорости вращения. Значение вращающего момента двигателя может быть выражено той же формулой, что и для генератора (6.13).
Потребляя электрическую энергию из сети, двигатель постоянного тока развивает вращающий момент, который при установившемся режиме всегда уравновешен тормозным моментом, создаваемым нагрузкой, поэтому при увеличении механической нагрузки на валу двигателя вращающий момент оказывается меньше тормозного. Двигатель уменьшает скорость вращения, а это приводит к уменьшению ЭДС самоиндукции и увеличению потребляемого тока. При неизменном магнитном потоке ток нагрузки увеличивается до тех пор, пока не восстановится равенство вращающего и тормозного моментов.
В зависимости от способа подключения обмотки возбуждения к якорю двигатели, как и генераторы постоянного тока, различают независимого, параллельного, последовательного и смешанного возбуждения.
Генератор-двигатель
Чаще всего представляет собой электродвигатель, соединенный валом с генератором. В конструкцию также вводятся дополнительные устройства для стабилизации выходного напряжения и частоты.
Известны также умформеры с единым ротором, в которых обмотки разного рода тока разъединены. Обмотки постоянного тока выводятся на коллектор, а переменного — на контактные кольца.
Содержание
Применения
Принцип действия умформера может применяться для преобразования:
Умформеры использовались в системах электрического питания ЭВМ первого поколения.
Умформеры (мотор-генераторы) применяются на трамваях, троллейбусах с косвенной системой управления, электровозах и электропоездах для получения низкого напряжения (24 и 50 В соответственно), питающего цепи управления. В 80-х—90-х годах на городском электротранспорте были вытеснены статическими полупроводниковыми преобразователями на тиристорах (ТЗУ), а позже — на транзисторах.
Достоинства и недостатки
К достоинствам можно отнести:
В настоящее время
В настоящее время вытеснен из мобильных применений твердотельными преобразователями, а также более широким использованием низковольтной аппаратуры. По-прежнему выгодно применение в промышленности и энергетике для преобразования сравнительно больших мощностей. Перспективно применение умформеров на основе машин двойного питания для передачи мощностей между сетями 50 и 60 Гц, а также между сетью с низкими параметрами напряжения и частоты и сетью с особо высокими требованиями. В этом случае для питания обмоток ротора применяется ещё и статический преобразователь частоты, но мощность преобразователя нужна меньшая (для приведенного примера преобразования 50 в 60 Гц это составляет около 1/5 полной мощности).
Обратимость электрических машин
Обратимость электрических машин вызвана одинаковым устройством преобразователем электрической энергии в механическую и механической в электрическую. Таким образом, электрические машины взаимозаменяемы: любой электродвигатель может использоваться в качестве генератора и наоборот, электродинамическая головка может использоваться в качестве микрофона и наоборот, и т. п.
Приоритетная функция электрической машины определяет её конструктивные особенности, вследствие которых обратимость становится неравномерной. Так, электрогенератор будет иметь несколько больший КПД, чем используемый в качестве генератора соответствующий по размерам электродвигатель, электродинамический микрофон будет выдавать более качественный звуковой сигнал, чем равная по размерам динамическая головка.
Применение
Данное явление широко используется в электротехнике, например, для электродинамического торможения: двигатель постоянного тока, будучи отключен от питающего его источника, вращаясь по инерции, сразу же переходит в генераторный режим из-за наличия в нём противоэлектродвижущей силы. Если одновременно с отключением от источника двигатель замкнуть на небольшое сопротивление, то под действием противоэлектродвижущей силы в замкнутой цепи якорной обмотки возникнет большой ток, который и создаст в двигателе тормозящий момент, направленный против его вращения, вследствие чего двигатель быстро остановится. Кроме того, генерируемый двигателем ток может подзаряжать аккумуляторы транспортного средства, на котором установлен, либо возвращаться в питающую электросеть, как происходит на некоторых электропоездах и трамваях при торможении или движении под уклон. Такой режим работы транспортного средства называется рекуперативным торможением.
Обратимость иногда используется в электронной технике: например, в некоторых образцах связной аппаратуры динамическая головка в режиме передачи служит микрофоном. Этим достигается улучшение массогабаритных показателей и удешевление изделия. Также известны образцы устройств, в которых светодиод часть времени используется в качестве фотодиода. Таким путём упрощается оптический тракт двунаправленных устройств оптической связи.
Свойством обратимости обладают также гидравлические машины.
Тема 1.8. Электрические машины переменного тока
Электрические машины переменного тока
Электрические машины переменного тока
Электрические машины служат для превращения механической энергии в электрическую (генераторы переменного и постоянного тока) и для обратного превращения (электродвигатели).
Во всех указанных случаях используются в сущности три основных открытия в области электромагнетизма: явление механического взаимодействия токов, открытое Ампером в 1821 г., явление электромагнитной индукции, открытое Фарадеем в 1831 г., и теоретическое обобщение этих явлений, сделанное Ленцем (1834 г.) в его известном законе о направлении индукционного тока (по существу закон Ленца предвосхитил закон сохранения энергии для электромагнитных процессов).
Для преобразования механической энергии в электрическую или обратно необходимо создать относительное движение проводящего контура с током и магнитного поля (магнита или тока).
В электрических машинах, рассчитанных на длительную работу, используется вращательное движение подвижной части машины (ротор машины переменного тока), расположенной внутри неподвижной части (статора). Обмотка машины, служащая для создания магнитного поля, называется индуктором, а обмотка, обтекаемая рабочим током, называется якорем. Оба последних термина употребляются и для машин постоянного тока.
Для увеличения магнитной индукции обмотки машин размещаются на ферромагнитных телах (сталь, чугун).
Все электрические машины обладают свойством обратимости, т. е. могут использоваться как в качестве генераторов электрической энергии, так и в качестве электродвигателей.
Асинхронные двигатели
Под медным диском, способным вращаться вокруг вертикальной оси, проходящей через его центр, помещается вертикальный подковообразный магнит, приводимый во вращение вокруг той же оси (механическое взаимодействие диска и магнита исключено). При этом диск приходит во вращение в ту же сторону, что и магнит, но с меньшей скоростью. Если увеличить механическую нагрузку на диск (например, увеличив трение оси о подпятник), то скорость его вращения уменьшается.
Физический смысл этого явления легко объясняется теорией электромагнитной индукции: при вращении магнита создается вращающееся магнитное поле, наводящее в диске вихревые токи величина последних зависит при прочих равных условиях от относительной скорости поля и диска.
Согласно закону Ленца диск должен прийти во вращение в направлении поля. При отсутствии трения диск должен приобрести угловую скорость, равную скорости магнита, тогда ЭДС индукции исчезнет. В реальных условиях трение неизбежно присутствует, и диск приобретает меньшую скорость. Ее величина зависит от механического тормозящего момента, испытываемого диском.
Несовпадение скорости вращения диска (ротора) со скоростью вращения магнитного поля отражено в названии двигателей.
Генераторы переменного тока
Благодаря неподвижности обмотки якоря отпадают технические затруднения, связанные с использованием скользящих контактов при больших мощностях.
На рисунке ниже схематически изображен однофазный генератор. Его ротор имеет восемь полюсов. На них намотаны катушки (не показанные на рисунке), питаемые от постороннего источника постоянным током, подводимым к контактным кольцам, укрепленным на валу ротора. Полюсные катушки намотаны таким образом, что знаки полюсов, обращенных к статору, чередуются. Число полюсов обязательно четное.
В теле статора размещена обмотка якоря. Ее длинные рабочие «активные» проводники, перпендикулярные к плоскости чертежа, показаны на рисунке кружками, они пересекаются линиями магнитной индукции при вращении ротора.
В кружках указано мгновенное распределение направлений индуцированных электрических полей. Соединительные провода, идущие по передней стороне статора, показаны сплошными линиями, а по задней стороне — пунктиром. Зажимы К служат для присоединения внешней цепи к обмотке статора. Направление вращения ротора указано стрелкой.
Если мысленно разрезать машину по радиусу, проходящему между зажимами К, и развернуть на плоскость, то взаимное расположение обмотки статора и полюсов ротора (сбоку и в плане) изобразится схематическим рисунком:
Рассматривая рисунок, убеждаемся, что все активные проводники (проходящие над полюсами индуктора) соединены друг с другом последовательно, причем индуцируемые в них ЭДС суммируются. Фазы всех ЭДС, очевидно, получаются одинаковыми. За время одного полного оборота ротора в каждом из проводников (и, следовательно, во внешней цепи) получится четыре полных периода изменения тока.
Если электрическая машина имеет p пар полюсов и ротор вращается, совершая n оборотов в секунду, то частота получаемого от машины переменного тока равна f = pn гц.
Так как частота ЭДС в сети должна быть неизменна, то скорость вращения роторов должна быть постоянна. Для получения ЭДС технической частоты (50 гц) можно использовать сравнительно медленное вращение, если число полюсов ротора достаточно велико.
Для получения трехфазного тока в теле статора располагают три отдельные обмотки. Каждая из них смещена относительно двух других на одну треть дугового расстояния между соседними (разноименными) полюсами индукторов.
Легко убедиться, что при вращении индукторов в обмотках индуцируются ЭДС, сдвинутые по фазе (во времени) на 120°. Концы обмоток выводятся из машины и могут соединяться звездой или треугольником.
В генераторе относительная скорость поля и провода определяется диаметром ротора, числом оборотов ротора в секунду и числом пар полюсов.
Если генератор приводится во вращение током воды (гидрогенератор), то обычно он делается тихоходным. Для получения нужной частоты тока приходится увеличивать число полюсов, что в свою очередь требует увеличения диаметра ротора.
По ряду технических соображений мощные гидрогенераторы имеют обычно вертикальный вал и располагаются над гидротурбиной, приводящей их во вращение.
Если генератор приводится во вращение двигателем внутреннего сгорания, то его называют дизель-генератором, так как в качестве двигателей обычно применяют дизели, потребляющие более дешевое топливо.
Обратимость генераторов, синхронные двигатели
Если к обмотке статора генератора приключить переменное напряжение от внешнего источника, то возникнет взаимодействие полюсов индуктора с магнитным полем тока, создавшегося в статоре, причем на все полюсы будут действовать вращающие моменты одного и того же направления.
Если ротор вращается с такой скоростью, что как раз через половину периода переменного тока под рассматриваемый проводник обмотки статора подойдет следующий полюс индуктора (противоположный по знаку первому полюсу), то знак силы взаимодействия между ним и током, изменившим свое направление, останется прежним.
При этих условиях ротор, находясь под непрерывным воздействием вращающего момента, будет продолжать свое движение и сможет приводить в действие какой-либо механизм. Преодоление сопротивлений движению ротора будет происходить за счет энергии, потребляемой из сети, и генератор превратится в электродвигатель.
Следует отметить, однако, что непрерывное движение возможно лишь при строго определенной скорости вращения, так как при отклонении от нее на каждый из полюсов ротора, перемещающийся между двумя проводниками статора, часть времени будет действовать ускоряющий вращающий момент, часть же времени — тормозящий.
Таким образом, скорость вращения двигателя должна быть строго определенной,— время, в течение которого полюс заменяется следующим, должно совпадать с полупериодом тока, поэтому подобные двигатели и называются синхронными.
Если переменное напряжение подается в обмотку статора при неподвижном роторе, то, хотя все полюсы ротора в течение первого полупериода тока и испытывают действие вращающих моментов одного и тою же знака, все же вследствие инерции ротор не успеет сдвинуться с места. В следующий полупериод знак вращающих моментов для всех полюсов ротора изменится на обратный.
В результате ротор будет вибрировать, но вращаться не сможет. Поэтому синхронный двигатель необходимо сначала раскрутить, т. е. довести до нормального числа оборотов, и лишь после этого включать ток в обмотку статора.
Раскручивание синхронных двигателей производится механическими способами (при малых мощностях) и специальными электрическими устройствами (при больших мощностях).
При небольших изменениях нагрузки режим двигателя автоматически изменяется, приспосабливаясь к новой нагрузке. Так, при увеличении нагрузки на вал двигателя ротор мгновенно затормаживается. Благодаря этому меняется фазовый сдвиг между напряжением сети и противодействующей ЭДС индукции, наводимой индуктором в обмотке статора.
Кроме того, реакция якоря создает размагничивание индукторов, поэтому ток в статоре растет, индукторы испытывают увеличенный вращающий момент и двигатель, вновь начинает вращаться синхронно, преодолевая увеличенную нагрузку. Аналогичный процесс происходит при уменьшении нагрузки.
При резких колебаниях нагрузки эта приспособляемость двигателя может оказаться недостаточной, скорость его изменится значительно, он «выпадет из синхронизма» и в конце концов остановится, при этом исчезает ЭДС индукции, наводившаяся в статоре, и ток в нем резко увеличивается. Поэтому следует избегать резких колебаний нагрузки. Для остановки двигателя, очевидно, нужно сначала выключить цепь статора, а потом уже выключать индукторы, при пуске двигателя следует придерживаться обратного порядка операций.
Синхронные двигатели наиболее часто применяются для привода механизмов, которые работают с постоянной скоростью. Достоинства и недостатки синхронных двигателей, а также способы их пуска рассмотрены здесь: Синхронные двигатели и их применение