Международные стандарты диагностики автомобиля
Протоколы стандарта OBD2
1. OEM (протокол производителя).
Коммутация +12в. при включении зажигания.
2. Шина + (Bus positive Line). SAE-J1850 PWM, SAE-1850 VPW.
3. —
4. Заземление кузова.
5. Сигнальное заземление.
6. Линия CAN-High высокоскоростной шины CAN Highspeed (ISO 15765-4, SAE-J2284).
7. K-Line (ISO 9141-2 и ISO 14230).
8. —
9. Линия CAN-Low, низкоскоростной шины CAN Lowspeed.
10. Шина — (Bus negative Line). SAE-J1850 PWM, SAE −1850 VPW.
11. —
12. —
13. —
14. Линия CAN-Low высокоскоростной шины CAN Highspeed (ISO 15765-4, SAE-J2284).
15. L-Line (ISO 9141-2 и ISO 14230).
16. Питание +12в от АКБ.
Существует два типа протокола J1850. PWM является высокоскоростным и обеспечивает передачу информации со скоростью 41,6 Кбайт/с. Он применяется в автомобилях марок Ford, Jaguar и Mazda. В протоколе PWM сигналы передаются по двум проводам, подсоединенным к 2 и 10 контакту диагностического разъема.
Данный протокол разработан компанией ISO. Он не такой сложный, как протоколы J1850 и не требует в использовании специальных коммуникационных микропроцессоров, но, с другой стороны, обеспечивает довольно медленную передачу данных со скоростью 10 Кбайт/c. Протоколы ISO 9141 и ISO 14230 схожи по физической реализации обмена информацией, но различаются ее использованием. Поэтому сканер ISO 9141, обычно может работать и с ISO 14230, но не наоборот.
В протоколе ISO 9141-2 сигналы передаются по 7 контакту (К-линия) и опционально по 15 контакту (L-линия). К-линия является двунаправленной (т.е. передает данные в обе стороны), L-линия однонаправленная и используется лишь для соединения ЭБУ и сканера, после чего линия L переходит в состояние логической единицы.
Физический уровень передачи информации в протоколах ISO 9141 и ISO 14230 заключается в одновременной передачи ЭБУ специального 8-битного кода по К- и L-линиям со скоростью 5Б/сек. Если код правильный, то ЭБУ посылает сканеру 8-битный код со скоростью последующего соединения. Затем передается еще два кода с информацией о последующем соединении и расположении К- и L-линий. Сканер возвращает отражение этих кодов в ЭБУ. На этом процесс распознавания окончен.
ISO 14230-4 (др. название Keyword Protocol 2000)
На физическом уровне данный протокол идентичен ISO 9141, но является еще более медленным (скорость передачи данных от 1,2 до 10 Кбайт/c в быстрой версии).
CAN-протокол был разработан компанией Bosch для автомобильного и промышленного применения. В рамках стандарта OBD2 протокол использует линии CAN High и CAN Low, т.е. 2 контакта для обмена сигналом: 6 и 14. Является самым скоростным и совершенным. Сейчас данный протокол используется на большинстве современных автомобилях. Стандарт CAN не регламентирует определенной скорости работы для каждой шины в автомобиле. С помощью отдельных и встроенных микроконтроллеров есть возможность менять ее от 20 Кбит/c до 1 Мбит/с.
Стандарты диагностики электронных блоков автомобилей. Часть 1 — Стандарты SAE
Современные автомобили могут содержать до десяти и более электронных блоков управления, в задачу которых входит обеспечение функционирования основных механических агрегатов, систем безопасности, отображения информации и обеспечения комфорта. Ключевым элементом каждого из таких блоков является микроконтроллер – однокристальный компьютер, выполняющий записанную во внутренней или внешней памяти микропрограмму («прошивку», англ. firmware).
Применение микроконтроллеров, с одной стороны, позволяет реализовать сложные алгоритмы управления агрегатами автомобиля, а с другой – создает определенные трудности при выявлении причин неисправностей в работе этих агрегатов. Современные электронные блоки управления способны в определенной степени самостоятельно (алгоритмически) выявлять отклонения в работе тех систем, которыми они управляют, однако механизм их взаимодействия с водителем чаще всего ограничивается включением соответствующей лампы на приборной доске (самая известная из которых – лампа «check engine», проверь двигатель). Даже несмотря на распространение жидкокристаллических дисплеев в приборных панелях, автопроизводители не спешат выводить на них диагностическую информацию. Такой подход вынуждает автовладельцев прибегнуть к поиску специализированного диагностического оборудования, либо к поиску станции технического обслуживания, где это оборудование имеется в наличии.
Любое оборудование для диагностики электронных блоков автомобиля представляет собой программно-аппаратный комплекс, задачей которого является организация взаимодействия между системой управления и человеком, осуществляющим диагностику. Таким образом, диагностическое оборудование само по себе не выявляет неисправности, оно является инструментом для передачи различных числовых показателей от электронных блоков управления к человеку и, в ряде случаев, команд управления от человека к электронному блоку.
Аппаратная составляющая диагностических комплексов чаще всего представлена адаптерами, связывающими электрические цепи блоков управления с персональными компьютерами, либо законченными устройствами с дисплеем, которые не требуют подключения к компьютеру (автомобильные диагностические сканеры).
Программная составляющая диагностических комплексов может быть представлена:
1) прикладным программным обеспечением для компьютера. В этом случае адаптер необходим для согласования логических уровней между блоком управления и компьютером. Примерами таких комплексов являются продукты VCDS (VAG-COM)*, CASCADE*, OpenDiag* и большинство других программ, осуществляющих диагностику по K-линии;
2) прикладной программой и микропрограммой адаптера. При этом адаптер должен не только обеспечивать электрическое согласование с диагностической линией блока управления, но и работать с данными на канальном уровне. Примерами таких комплексов являются Hyundai/KIA GDS, Toyota Techstream, Suzuki SZ Viewer*, ScanMaster-ELM и другие комплексы, использующие адаптеры на основе стандарта SAE J2534, микросхемы ELM327 и т.п.;
3) только микропрограммой диагностического устройства (диагностического сканера), если оно не требует использования компьютера. Например, Launch CReader V, устройства CARMAN SCAN, G-Scan, ШТАТ-ДСТ-2 и другие. В эту категорию можно отнести и большинство нештатных бортовых компьютеров.
Примечание: программные продукты, отмеченные звездочкой (*), могут быть отнесены сразу к двум категориям, так как допускают использование нескольких видов адаптеров.
Функционирование любых автомобильных диагностических комплексов обеспечивается соблюдением целого ряда технических требований, описанных в международных стандартах.
Стандарты диагностики электронных блоков автомобилей выпускаются двумя основными организациями:
1) Society of Automotive Engineers (SAE), основанная в США для разработки инженерных стандартов в автомобильной и аэрокосмической промышленности;
2) International Organization for Standardization (ISO) – не нуждающаяся в представлении организация, охватывающая своими стандартами подавляющее большинство отраслей промышленности, в том числе и автомобилестроение.
Некоторые стандарты SAE и ISO копируют друг друга, но в различных источниках обычно упоминается только одна, более ранняя версия.
Стандарты SAE
J1930 – Electrical/Electronic Systems Diagnostic Terms, Definitions, Abbreviations, and Acronyms
[ссылка]
Терминологический словарь, который является отправной точкой при изучении любых других стандартов на электронные системы автомобилей. Благодаря этому стандарту, можно легко расшифровать большинство часто встречающихся аббревиатур, таких как EFI, ECM, DTC, EVAP, MAF, TCM, OBD и т.д.
J1962 – Diagnostic Connector
[ссылка]
Данный стандарт описывает электрический разъем OBD-II, с помощью которого диагностическое оборудование подключается к электронным блокам автомобиля. В документе описано два вида разъемов: тип A и тип B для транспортных средств с бортовым напряжением 12 В и 24 В соответственно. Стандарт предъявляет следующие требования к этим разъемам:
1) требования по расположению разъема со стороны водителя или переднего пассажира (с указанием предпочтительных зон монтажа);
2) требования по геометрическим размерам разъема и его контактов;
3) электрические характеристики (ток через контактное соединение, максимальное напряжение, максимальное сечение провода, сопротивление контактного соединения, сопротивление изоляции проводов);
4) требования по устойчивости к условиям окружающей среды (температуре и влажности);
5) назначение контактов;
6) требования к диагностическому оборудованию (речь идет об ответной части разъема и входном сопротивлении подключаемого устройства).
J1850 – Class B Data Communication Network Interface
[ссылка]
Один из трёх ключевых стандартов диагностики OBD-II, который описывает два вида каналов связи между электронными блоками автомобиля и диагностическим оборудованием:
1) VPW (Variable Pulse Width) – однопроводной физический интерфейс с переменной шириной импульса, в котором логические уровни и состояния кодируются поддержанием определенной величины электрического напряжения в диагностической линии на разные интервалы времени. Обеспечивает связь на скорости 10.4 кбит/с. Применяется на автомобилях концерна General Motors;
2) PWM (Pulse Width Modulation) – двухпроводной физический интерфейс с дифференциальным электрическим сигналом, в котором логические уровни кодируются изменением скважности импульсов при равных интервалах времени на один бит. Обеспечивает связь на скорости 41.6 кбит/с. Применяется на автомобилях компании Ford.
Стандарт регламентирует следующие требования и параметры физических линий связи:
1) тип физического носителя – один электрический провод без дополнительных требований к расположению в жгутах (VPW) или два электрических провода, укладываемых параллельно на одинаковом расстоянии друг к другу или в виде витой пары (PWM);
2) нагрузочную способность электронных блоков сети и максимальное количество этих блоков;
3) максимальную длину линии связи;
4) электрические характеристики линии (диапазоны напряжений, сопротивление, емкость, токи утечки и т.д.);
5) виды электрических сигналов на линиях, определение логических состояний (битов данных), начала и конца кадра из нескольких бит, временные характеристики сигнала, виды нештатных состояний и способы их определения;
6) требования по электромагнитной совместимости.
Канальный уровень протоколов стандарта J1850 описывает формат кадра данных (совокупности бит, образующих единичное сообщение в сети), алгоритм подсчета контрольной суммы, способы определения ошибок в линии и предупреждения коллизий, виды адресации.
Класс B в названии стандарта говорит о том, сеть описываемого типа предназначена для взаимодействия различных электронных систем автомобиля между собой и, соответственно, уменьшения количества датчиков и вспомогательных устройств.
J1978 – OBD II Scan Tool (аналог ISO 15031-4)
[ссылка]
Небольшой документ, который описывает требования к диагностическим комплексам, работающим в стандартах OBD-II. Этот стандарт, скорее всего, будет интересен только изготовителям диагностического оборудования с поддержкой мониторинга систем, связанных с вредными выбросами (см. SAE J1979).
Перечислим некоторые требования стандарта:
1) устройство должно поддерживать пять видов диагностических линий связи (часто их называют протоколами, что впоследствии создает путаницу между их уровнями в сетевой модели ISO OSI): ISO 9141 (K/L-Line), ISO 14230 (K/L-Line), SAE J1850 (VPW и PWM), ISO 15765 (CAN);
2) устройство должно автоматически определять вид имеющейся на автомобиле диагностической линии;
3) диагностический комплект должен информировать пользователя о наличии ошибок и состоянии лампы «Check Engine», отображать значения определенных показателей в специальном интерфейсе;
4) устройство должно выдерживать определенные отклонения в величине питающего напряжения и отвечать требованиям по максимальному потреблению энергии.
Наиболее популярной практической реализацией данного стандарта являются адаптеры на основе микросхемы ELM327 и её аналогов при использовании совместно с диагностической программой (например, ScanMaster-ELM). В роли диагностической программы может выступать и программа-терминал, так как ELM327 осуществляет взаимодействие с прикладными программами с помощью понятных человеку текстовых AT-команд.
J2012 – Diagnostic Trouble Code Definitions (аналог ISO 15031-6)
[ссылка]
В этом стандарте содержится наиболее полный перечень диагностических кодов неисправностей, которые делятся на следующие категории:
1) Body – внутренняя кузовная электроника. Коды ошибок в этой категории находятся в диапазоне B0xxx – B3xxx, а неисправности относятся к системам центрального замка и штатного охранного модуля, системам обеспечения комфорта и климата, системам управления приводами сидений и люка, системам надувных подушек безопасности и т.п. При этом коды подгруппы B0 являются стандартными и унифицированными для всех автопроизводителей, коды подгрупп B1 и B2 определяются автопроизводителями самостоятельно (у каждой марки могут быть свои), а коды подгруппы B3 зарезервированы для дальнейшего использования;
2) Chassis – электронные модули, связанные с ходовой частью. Коды ошибок находятся в диапазоне C0xxx – C3xxx, а неисправности относятся к системам управления торможением и стабилизацией (ABS/ESP), системе усилителя рулевого управления (англ. power steering), системам управления пневматической подвеской и т.д. Деление на подгруппы в этой категории выполнено по аналогии с категорией Body;
3) Powertrain – электронные модули, управляющие силовой установкой. Коды этой категории находятся в диапазоне P0xxx – P3xxx и их перечень наиболее полно отражен в стандарте (в то время как коды неисправностей из категорий Body и Chassis не приведены вовсе). Подгруппы P0 и P2 унифицированы, подгруппы P1 и P3 определяются автопроизводителями, ходя стандарт вводит дополнительное деление на диапазоны внутри этих подгрупп. Коды неисправностей в этой категории наиболее часто тревожат автовладельцев, ведь они относятся к системам управления двигателем и автоматической трансмиссией;
4) Network –проблемы с электронными сетями автомобиля. Данные коды неисправностей находятся в диапазоне U0xxx – U3xxx и могут возникать в любом электронном блоке управления, потому что их задача – обозначить проблемы с коммуникацией между электронными блоками. Например, код U0100 может возникать в блоке управления автоматической трансмиссии (TCM) обозначает потерю связи с блоком управления двигателем (ECM).
Помимо кодов неисправностей, документ содержит информацию о нумерации и расположении датчиков кислорода в системе выпуска отработавших газов.
J2178 – Class B Data Communication Network Messages
[части 1, 2, 4] [часть 2] [часть 3]
Большой стандарт, состоящий из четырех частей. Значительная часть информации в нем может быть интересна программистам и исследователям автомобильных сетей, потому что описываемые сетевые сообщения не относятся к диагностической информации, а используются для поддержания взаимодействия разных электронных модулей автомобиля друг с другом. Основной упор в стандарте делается на адресах и видах сообщений, передаваемых по физическим линиям стандарта J1850, поэтому я ставлю под сомнение его применимость к современным автомобилям, которые чаще всего оснащаются электронными сетями на основе шины CAN.
J2284 – High-Speed CAN (HSC) for Vehicle Applications
[часть 1] [часть 2] [часть 3]
Стандарт, состоящий из четырех единообразных частей, описывающих требования к физической линии связи CAN для разных скоростей передачи данных: 125 kbps, 250 kbps, 500 kbps и 2 Mbps (CAN FD) соответственно. Рассмотрены основные аспекты физического уровня сетей на основе шины CAN для каждой скорости передачи данных:
1) Электрические параметры (допустимые напряжения на линиях шины относительно массы, емкость и сопротивление линии, сопротивление подключенных устройств);
2) Требования по уровню электромагнитного излучения;
3) Временные характеристики сигнала;
4) Длина линии связи и условия ее укладки в жгутах.
J2411 – Single Wire CAN Network for Vehicle Applications
[ссылка]
Стандарт на однопроводную CAN-шину для низкоскоростной передачи данных. Этот документ был разработан как более дешевая альтернатива вышеописанному стандарту J2284 и имеет схожую структуру, предъявляя требования к физической линии для обеспечения обмена информацией на скоростях 33.333 Кбит/сек (в нормальном режиме) и 83.333 Кбит/сек (в скоростном режиме). В статье «On-board diagnostics» в Wikipedia упоминается, что данный стандарт еще называют GMLAN. Он был создан компанией GM для своих автомобилей, а диагностическая линия в этом стандарте находится на первом контакте разъема OBD.
На этом считаю обзор стандартов SAE практически завершенным (статья будет дополнена информацией о SAE J2534). Следующая часть статьи будет посвящена диагностическим стандартам ISO.
Международные стандарты диагностики автомобиля
СРЕДСТВА ДИАГНОСТИРОВАНИЯ АВТОМОБИЛЕЙ,
ТРАКТОРОВ, СТРОИТЕЛЬНЫХ И ДОРОЖНЫХ МАШИН
Классификация. Общие технические требования
Technical diagnostics. Diagnosis means of motor vehicles, tractors, agricultural,
construction and road machinery. Classification. General technical requirements
Дата введения 1983-01-01
Постановлением Государственного комитета СССР по стандартам от 19 марта 1982 г. N 1118 дата введения установлена 01.01.83
Стандарт устанавливает общие технические требования к СТД в части обеспечения их надежности, технологичности, унификации, устойчивости к воздействию окружающей среды, безопасности эксплуатации и других показателей качества.
Применение стандарта обязательно при проектировании и разработке СТД новых типов и нормативно-технической документации на них, а также модернизации СТД, выпускаемых серийно.
1. КЛАССИФИКАЦИЯ
1.1. По исполнению СТД подразделяют на:
1.2. Внешние СТД подразделяют на стационарные, передвижные и переносные.
1.3. СТД по функциональному назначению подразделяют на группы:
двигателя и его систем;
системы внешних световых приборов;
ходовой части и подвески;
рабочего и специального оборудования.
1.4. По степени охвата машин диагностированием и виду применяемых систем диагностирования СТД подразделяют на:
входящие в общие системы диагностирования машин в целом;
входящие в локальные системы диагностирования отдельных сборочных единиц или составных частей машин;
отдельно применяемые средства диагностирования.
Перечень составных частей машин, подвергаемых диагностированию, должен быть установлен в стандартах или технических условиях на машины конкретного вида.
1.5. По степени автоматизации процесса управления СТД подразделяют на автоматические, полуавтоматические, с ручным или ножным управлением (неавтоматические), комбинированные.
1.7. СТД допускается изготовлять в сочетании исполнений и групп, установленных в пп.1.3-1.6.
1.8. По виду энергии носителя сигналов в канале связи СТД подразделяют на электрические и (или) магнитные; механические; оптические; пневматические; гидравлические и комбинированные.
1.9. По метрологическим характеристикам СТД подразделяют на группы по ГОСТ 12997-84.
1.10. СТД, имеющие точностные характеристики, подразделяют на три группы:
2. ОБЩИЕ ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
2.1 СТД следует изготовлять в соответствии с требованиями настоящего стандарта, стандартов и (или) технических условий на конкретные СТД по рабочим чертежам, утвержденным в установленном порядке.
2.2. Для СТД устанавливают нормальные и рабочие условия применения, а также предельные условия транспортирования и хранения.
2.3. Нормальные значения (области значений) влияющих величин, характеризующих климатические воздействия на СТД, должны соответствовать следующим:
температура окружающего воздуха (20±5) °С;
относительная влажность воздуха (65±15)%;
атмосферное давление (100±4) кПа (750±30) мм рт.ст.
2.4. Значения климатических и механических влияющих величин для рабочих условий применения и предельных условий транспортирования и хранения СТД различных групп должны соответствовать требованиям, установленным в ГОСТ 22261-94.
2.5. СТД должны обеспечивать измерения или контроль диагностических параметров на режимах работы машины, указанных в стандартах на машины конкретного вида, инструкции по эксплуатации, техническом описании или инструкции по техническому обслуживанию (ремонту) машины. Номенклатура параметров машин, диагностируемых СТД, должна быть установлена в стандартах и (или) технических условиях на конкретные СТД.
2.6. СТД должны обеспечивать с минимальной трудоемкостью измерение или контроль диагностических параметров сборочных единиц и составных частей машины, как правило, без их разборки. Для обеспечения непосредственного измерения диагностического параметра, а также установки, крепления и съема диагностической аппаратуры допускается частично разбирать сборочные единицы и составные части машины.
2.7. Выходные сигналы СТД, предназначенные для информационной связи с другими СТД и системами обработки данных, а также выходные сигналы измерительных преобразователей (датчиков) должны соответствовать требованиям ГОСТ 12997-84.
Конкретные значения параметров выходных сигналов измерительных преобразователей и СТД должны быть установлены в стандартах и (или) технических условиях на конкретные СТД.
2.8. Требования к метрологическим и точностным характеристикам
Конкретные виды метрологических и точностных характеристик и пределы их допускаемых значений для нормальных и (или) рабочих условий применения должны быть установлены в стандартах и (или) технических условиях на конкретные СТД в соответствии с требованиями ГОСТ 8.009-84.
2.8.2. СТД с точностными характеристиками должны обеспечивать измерения или контроль отдельных диагностических параметров, групп диагностических параметров или всех диагностических параметров машины с заданной погрешностью (точностью) измерения.
2.8.3. Классы точности СТД или пределы допускаемых погрешностей СТД, измеряющих два и более диагностических параметра, устанавливают в стандартах и (или) технических условиях на конкретные СТД по ГОСТ 8.401-80.
2.9. Требования к энергопитанию
2.9.1. Электропитание СТД должно осуществляться:
от однофазной сети напряжением 220 В и частотой 50 Гц;
от трехфазной сети напряжением 220/380 В и частотой 50 Гц;
от источников постоянного тока напряжением 12 и 24 В.
* На территории Российской Федерации действуют ГОСТ Р 41.48-99**, ГОСТ Р 41.65-99, ГОСТ Р 41.87-99.
2.9.2. Значения и допускаемые отклонения параметров энергопитания пневматических и гидравлических СТД устанавливают по ГОСТ 12997-84 или в стандартах и (или) технических условиях на конкретные СТД.
2.12. Требования к СТД при климатических и механических воздействиях
2.12.1. СТД должны сохранять свои характеристики в пределах норм, установленных в стандартах и (или) технических условиях на конкретные СТД, во время пребывания в рабочих климатических условиях по ГОСТ 22261-94.
2.12.2. СТД должны сохранять свои характеристики в пределах норм, установленных в стандартах и (или) технических условиях на СТД конкретного вида, после пребывания в предельных климатических условиях транспортирования по ГОСТ 22261-94 и последующего пребывания в нормальных или рабочих условиях применения в течение времени выдержки, установленного в стандартах и (или) технических условиях на конкретные СТД.
2.12.3. СТД в транспортной таре должны обладать прочностью при транспортировании, т.е. должны выдерживать без повреждений механические воздействия, соответствующие предельным условиям транспортирования по ГОСТ 22261-94.
2.12.4. Переносные СТД 5 и 7-й групп должны быть вибро- и ударопрочностными, т.е. должны выдерживать без повреждения воздействия вибрации и периодических ударов по ГОСТ 22261-94 и после их прекращения должны сохранять свои характеристики в пределах норм, установленных в стандартах и (или) технических условиях на конкретные СТД.
2.12.5. СТД в обыкновенном исполнении по устойчивости к механическим воздействиям должны соответствовать требованиям ГОСТ 12997-84.
2.12.10. Требования к СТД, защищенным от воздействия агрессивной среды, следует устанавливать в стандартах и (или) технических условиях на СТД конкретных групп и видов.
Конкретные значения уровня внешних радиопомех, при воздействии которых СТД должны сохранять работоспособность, должны быть установлены в стандартах и (или) технических условиях на конкретные СТД.