Множество легковых автомобилей назови подмножество
Множество легковых автомобилей назови подмножество
Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.
Математический аппарат инженера
1. Математика в инженерном деле
Задачи и упражнения
Задачи и упражнения.
Задачи и упражнения
Задачи и упражнения
Задачи и упражнения
1. Алгебра множеств
1. Логические функции
6. Конечные автоматы
Математический аппарат инженера
Сегодня трудно назвать область науки, промышленности и народного хозяйства, где бы не использовались математические модели. Это стало возможным благодаря совместным усилиям математиков, работавших в абстрактных областях, казавшихся вне приложений, и физиков-инженеров, и прежде всего радиотехников.
Основное внимание уделяется множествам, матрицам, графам, логике и вероятностям. Все эти разделы тесно связаны между собой, поэтому во вводной главе приведены краткие сведения по каждому из них, которые затем используются при более глубоком изложении материала. Внутренние ссылки даются тремя цифрами в скобках, означающими соответственно номера главы, параграфа, пункта. При ссылках на материал внутри главы ее номер опускается, а в пределах параграфа ссылка содержит только номер пункта.
При изучении вводной главы важно понять смысл основных определений, привыкнуть к соответствующей символике, научиться выполнять простейшие операции над математическими объектами. Этой цели должны способствовать приведенные в конце каждого параграфа задачи и упражнения, решение которых позволит закрепить и расширить изложенный материал. Даже если читатель отложит изучение специальных глав на будущее, то и тогда материал вводной главы может пригодиться при чтении специальной литературы и справочных пособий. Разумеется, каждый читатель в зависимости от его подготовки и целей наметит свой подход к использованию книги.
В конце каждой главы приведен краткий обзор литературы, который включает монографии и учебные пособия, использованные при подготовке той книги и рекомендуемые для более глубокого изучения затронутых в ней вопросов.
1. Математика в инженерном деле
1. Взаимодействие математики и техники. Технические науки развиваются в тесном взаимодействии и сотрудничестве с математикой. Это проявляется, с одной стороны, в использовании математического аппарата для решения научно-технических задач. С другой стороны, инженерная практика в значительной мере ориентирует и стимулирует развитие самой математики. Можно привести множество примеров, иллюстрирующих это положение.
Исследование различных типов дифференциальных уравнений с самого начала тесно связывалось с решением технических и физических проблем. Метод наименьших квадратов, ставший одним из эффективных средств обработки результатов наблюдений возник из потребностей геодезической практики. Начертательная геометрия развилась под влиянием строительного дела, архитектуры и механики. Огромный арсенал численных методов сформировался и продолжает развиваться благодаря практическим потребностям.
Взаимодействие математических и прикладных дисциплин приводит к их взаимному обогащению, причем этот процесс носит двусторонний характер. Нередко идеи и методы, разработанные для решения частных задач в какой-либо конкретной области, приобретают в процессе развития столь общее значение, что их строгое обоснование становится делом математиков. Те идеи и методы, которые выдерживаются всесторонние и подчас весьма длительные испытания, развиваются в математические теории, обслуживая затем более широкий класс задач, чем те, из которых они возникли.
Характерным примером в этом отношении является теория вероятностей, для оформления которой как раздела математики понадобилось несколько столетий, считая от первых попыток найти закономерности в азартных играх. Операционное исчисление, разработанное на интуитивном уровне в конце прошлого века для расчета электрических цепей, испытало на себе все превратности судьбы, но затем получило строгое обоснование и нашло свое место в теории интегральных преобразований.
Можно привести много других примеров, когда математические теории, возникающие и развивающиеся из внутренних потребностей математики, находят затем широкое практическое применение в других отраслях науки и техники. Так обстояло дело, например, с математической логикой, аппарат которой стал одним из основных средства проектирования автоматов и моделирования дискретных систем. Неэвклидовы геометрии, служившие первоначально целям аксиоматического обоснования математики, нашли применение при конструировании самолетов и ракет. Теория электромагнитных волн была разработана за несколько десятилетий до их обнаружения и практического использования.
В результате взаимодействия математики и техники возникают и успешно развиваются новые прикладные науки. Так, на стыке теории вероятностей с техникой связи и передачи сообщений возникла теория информации, методы которой используются не только в технике, но и в экономике, лингвистике, биологии. Под влиянием и при непосредственном участии математики развиваются такие общие науки как кибернетика, теория цепей и систем.
Одним из наиболее эффективных результатов взаимодействия математики и техники явилось создание современных вычислительных машин. Симбиоз математических методов и технических средств электроники, магнитной техники, прикладной оптики и механики уже весьма высоко зарекомендовал себя в этом отношении и открывает необозримые перспективы в будущем. Развитие вычислительной техники позволяет привести в действие более мощные ресурсы математики и усиливает ее роль как непосредственной производительной силы общества, способствуя тем самым прогрессу самой математики.
2. Современная математика. Наиболее характерной чертой современной математики является чрезвычайно высокая степень обобщения и абстракции. Традиционное определение математики как науки о пространственных формах и количественных отношениях уже не соответствует современному положению вещей, оно приобретает более глубокое и широкое содержание. Предмет современной математики составляют совокупности объектов самого общего вида и любые возможные отношения между ними.
Так, трехмерное геометрическое пространство обобщается на любое число измерений, и в этом многомерном пространстве изучаются пространственно подобные отношения (длина, расстояние, ортогональность). Алгебраические операции абстрагируются и распространяются на объекты любой природы, которые образуют различные структуры в зависимости от приписываемых им свойств (группа, кольцо, тело, поле). Под переменными понимаются не только обычные величины, но и функции, которые рассматриваются как объекты функциональных пространств. Изучаемые математикой объекты объединяют совокупности величин, для представления которых используются такие понятия как множества, матрицы, графы.
Множества и операции над ними для старших школьников
Юлия Мехонцева
Множества и операции над ними для старших школьников
МНОЖЕСТВА И ОПЕРАЦИИ НАД НИМИ
1. Понятие множества является одним из основных понятий математики. Оно не имеет точного определения и, как правило, объясняется с помощью примеров.
Дадим следующее интуитивное определение понятия множества:
Множество – определенная совокупность объектов.
Объекты, из которых состоит множество, называются элементами множества.
Множество домов на данной улице, множество натуральных чисел, множество студентов группы и т. д.
Множества обычно обозначают заглавными латинскими буквами А, В, С, D, X, Y, элементы множества строчными латинскими буквами – a, b,c, d, x, y…
Для обозначения того, что объект x является элементом множества A,используют символику: x А (читается: x принадлежит А, запись x А обозначает, что объект x не является элементом множества A (читается: x не принадлежит А).
Множество не содержащее ни одного элемента называется пустым (обозначается🙂.
Множества из элементов которого составляем конкретное множество называется универсальным (обозначается: U).
U – множество людей на земле, А – студенты группы Эп-305.
Множества можно изображать с помощью кругов, которые называются кругами Эйлера или диаграммами Венна, универсальное множество принято обозначать прямоугольником.
Множество Название множества 3 элемента множеств
N Натуральные числа 1,2,3
Q Рациональные числа 0,5;-7,2;17
R Действительные числа
3.4. Способы задания множеств
Чтобы задать множество, нужно указать, какие элементы ему принадлежат.Это можно сделать различными способами:
1) Перечислением всех элементов множества в фигурных скобках.
2)Характеристическим предикатом, который описывает свойство всех элементов, входящих в множество. Характеристический предикат записывается после двоеточия или символа «|».
Р(x) = x N x Презентация «Мы любим мир живого. Кто спас шмеля?» Истории с раскрасками для старших дошкольников и младших школьников» ЛЮБИТЬ И ЗНАТЬ ПРИРОДУ Вы должны знать, что нельзя поймать ежика и принести его домой, нельзя поймать белочку и посадить ее в клетку. Какая.
Презентация «Мы не можем друг без друга» — учим старших дошкольников и младших школьников придумывать чистоговорки» Детей, начиная со старшего дошкольного возраста, не очень сложно научить придумывать рифмовки, ритмовки и чистоговорки. Например, для сочинения.
Презентация «Развитие в игровой форме мышления и речи у старших дошкольников и младших школьников «Все мы разные» Дорогие воспитатели, педагоги и родители! Предлагаю следующую презентацию, из серии пособий для развития мышления, речи и пополнения словарного.
Презентация «Семейное чтение с раскрасками «Подружка — совесть» для старших дошкольников и младших школьников Многие родители в своем желании доставить своим детям различные удовольствия, сделать их жизнь возможно более радостной, помнят о книгах.
Презентация «Стихи о характерах с раскрасками «Нам нравится учиться» для старших дошкольников и младших школьников» Сидели как-то дети во дворе и громко распевали: Солнышко, ядрышко, Выгляни в окошко, Нас согрей немножко! По улице шел дедушка. Он засмеялся.
Презентация «Стихи с раскрасками для старших дошкольников и младших школьников о характерах «О нашей любознательности» Дорогие мои воспитатели, педагоги и родители, заинтересованные в позитивном воспитании детей! Продолжаю публиковать небольшие подборки детских.
«Пришли Святки-а с ними и Колядки». Сценарий фольклорного праздника для старших дошкольников После новогодних праздников детям хочется продления сказки. Поэтому мы с педагогами воплощаем мечту в реальность. Готовим совместными.
Сценарий конкурсной литературной игры для старших дошкольников и младших школьников «По страницам любимых книг» Предварительная подготовка: игра построена по принципу телевизионной игры «Своя игра». Группа детей делится на 2 команды. Каждая команда.
Сценарий новогоднего представления для школьников средних и старших классов «Новогодний круиз со Снегурочкой» МБУДО «Дом пионеров и школьников Кувандыкского городского округа Оренбургской области» Сценарий новогоднего представления для школьников.
Стихотворение ко Дню Победы для старших дошкольников и младших школьников «ПИСЬМО С ФРОНТА» Рисунок Буянова Никиты Приближается великая дата – 75-летие Победы! И верно нет человека в нашей стране, не думающего,.
Множество и его элементы. Подмножества
Понятие множества
Что такое «множество», мы понимаем интуитивно. В этом смысле это понятие первично, так же как «точка» или «плоскость».
Создатель теории множеств Г.Кантор описывал множество как «многое, мыслимое нами как единое».
Приведём примеры множеств:
Множество людей в салоне самолёта
Множество деревьев в парке
Множество планет Солнечной системы
Множество электронов в атоме
Множество натуральных чисел
Множество «синих-синих презелёных красных шаров»
Конечное, бесконечное и пустое множества
Людей в салоне самолёта легко посчитать, это множество конечно.
С деревьями в парке, планетами и электронами – сложней. Скорее всего, мы не сможем назвать точное количество элементов этих множеств в данный момент времени. Однако, и эти множества конечны.
Натуральное число – это идеальный объект, абстракция. Множество натуральных чисел бесконечно. Как оказалось, человек может оперировать и абстракциями, и бесконечностями.
Можно себе представить даже то, «чего на свете вообще не может быть». Поскольку таких объектов нет, их множество будет пустым. Пустое множество является частью любого другого множества.
Помидоры на грядке
Числа (натуральные, рациональные, действительные и т.д.)
Количество рациональных чисел на отрезке [0;1]
Полосатые летающие слоны
Все точки пересечения двух параллельных прямых на плоскости
Способы задания множеств
1) Перечисление – в списке задаются все элементы множества.
Множество всех континентов Земли:
Множество букв слова «математика»:
Множество натуральных чисел меньших 5:
2) Характеристическое свойство – указывается особенность элементов множества.
D =
3) Графическое изображение – визуальное моделирование с помощью различных диаграмм (круги Эйлера, интервалы, графики и т.п.)
Подмножества
Говорят, что B содержит A, или B покрывает A.
Пустое множество является подмножеством любого множества.
Множество людей является подмножеством приматов, живущих на Земле.
Множество квадратов является подмножеством прямоугольников.
Множество всех подмножеств данного множества A называют булеаном или степенью множества A.
Примеры
Пример 1. Запишите данное множество с помощью перечисления элементов:
Задано множество целых чисел, квадрат которых меньше 5. Перечисляем:
Задано множество целых чисел, модуль которых не больше 3. Перечисляем:
Задано множество рациональных чисел, являющихся корнями уравнения
(x-1)(2x+5) = 0. Перечисляем:
Пример 2. Запишите данное множество с помощью характеристического свойства:
а) Множество всех натуральных чисел меньше 10
б) Множество всех действительных чисел, кроме 0
в) Множество всех точек с целыми координатами, принадлежащих прямой y = 2x+1
Пример 3. Изобразите на графике в координатной плоскости данное множество:
Задано конечное множество точек, которое можно представить перечислением:
Пример 4. Укажите и запишите с помощью перечисления одно из непустых конечных подмножеств для данного множества: