можно ли включать трансформатор без нагрузки
Народ! Почему трансформатор выходит из строя, если подключать его без нагрузки? ( с точки зрения физики плиз, кто знает)
Так гласит задание контрольной. ))))
Только измерительные трансформаторы тока нельзя подключать без нагрузки.
Остальным, в большинстве своём, всё равно.
У трансформаторов тока в таких случаях на вторичной обмотке появляется напряжение, стремящееся к бесконечности, что приводит к пробою изоляции обмотки и выходу трансформатора из строя.
От постоянного напряжения-безусловно сгорит.
Трансформатор не выходит из строя при отсутствии нагрузки.
Это опечатка или вопрос с подвохом.
Результирующий магнитный поток в магнитопроводе трансформатора тока равен разности магнитных потоков, создаваемых первичной и вторичной обмотками. В нормальных условиях работы трансформатора он невелик. Однако при размыкании цепи вторичной обмотки в сердечнике будет существовать только магнитный поток первичной обмотки, который значительно превышает разностный магнитный поток. Потери в сердечнике резко возрастут, трансформатор перегреется и выйдет из строя («пожар железа»). Кроме того, на концах оборванной вторичной цепи появится большая ЭДС, опасная для работы оператора. Поэтому трансформатор тока нельзя включать в линию без подсоединённого к нему измерительного прибора. В случае необходимости отключения измерительного прибора от вторичной обмотки трансформатора тока, ее обязательно нужно закоротить
Фигня. не выходит он из строя без нагрузки.
может просто греется немножко и слегка счётчик подкручивает, а ломаться нет причины.
потому что автор контрольной дебил. Трансформатор не выйдет из строя без нагрузки, будет работать в режиме холостого хода.
он наоборот отдыхает
межвитковые замыкания! или нагрев из за перемагничивания сердечника (это маловероятно так как энергия мала!)
Трансформатор без нагрузки потребляет электричество?
Много ли электроэнергии потребляет трансформатор, включенный в сеть без нагрузки? Есть ли смысл выдергивать все вилки из розеток?
Да потребляет, это потребление называется «Холостой ход». Потребление электроэнергии на себя, то есть нагрев самого трансформатора, создание электромагнитного поля самого трансформатора. Чем мощнее трансформатор, тем мощнее потери на холостой ход. В промышленности эти потери могут быть большие. Трансформаторы стоящие в садах тоже существенные. В бытовой технике трансформаторы стоят маломощные и потери небольшие, но есть. Бытовая техника типа микроволновка, стиральная машина, телевизор, музыкальный центр лучше отключать из розетки. Можно конечно замерить потребление каждого прибора, только смысла в этом нет слишком дорого выйдет.
Всё зависит от качества железа в сердечнике трансформатора. Электроэнергия при холостом ходе трансформатора (при отключенной нагрузке) расходуется на потери в стали сердечника. Этот расход современные электросчётчики прекрасно фиксируют, поэтому выдёргивать вилку смысл есть.
Насколько помнится из школьного курса физики, КПД трансформатора около 99 %. Значит около 1 % от передаваемой им мощности тратится на «внутренние потери», так называемые потери «в стали» (на перемагничивание) и «потери в меди» (на нагрев самих проводов обмоток). Но это в работающем трансформаторе (под нагрузкой). В неработающем трансформаторе эти потери меньше, но всё равно есть. Я оцениваю их в 0,5 % от номинальной мощности трансформатора. Много это или мало, оценивайте сами. Лично я считаю, что они пренебрежимо малы, и никогда не выдёргиваю из розетки вилку ни одного прибора (в целях экономии). Только когда надолго (на несколько дней) приходится покидать квартиру, то в целях безопасности, отключаю все приборы.
Существуют трансформаторы напряжения и трансформаторы тока.
Для трансформатора напряжения коэффициент трансформации это частное от деления количества витков в первичной обмотке на количество витков во воричной обмотке,или можно разделить напряжение первичной обмотки на напряжение вторичной обмотки.
Для трансформатора тока надо разделить ток в первичной обмотке на ток во вторичной обмотке,и узнаешь коэффициент трансформации.
Оно вам надо, чтоб всё [зачёркнуто] и сгорело на фиг?
Закон Ома вам поможет ответить на этот вопрос.
Но у вас слишком тонкий провод во вторичной обмотке. Провод, диаметром 1,5 мм (надеюсь, вы не ошиблись и указали именно диаметр) имеет сечение примерно 1,7 квадратных мм. Если даже допустить небольшую кратковременную перегрузку по плотности тока в 10 а/мм², то для вашей вторичной обмотки это всего навсего 17 ампер. При напряжении 1 вольт, мощность на выходе всего 17 ватт. Вы даже стакан чая не согреете такой мощностью.
15 мм², допускаемый ток немного больше 150 ампер. А вот на выводных концах такой шины подсоединяется короткий кусок медной проволоки диаметром меньше 1 мм. Нагревается до температуры плавления припоя всего за пару секунд. Очень удобный паяльник, когда надо очень срочно что-то припаять.
Для начала нужно понять принцип работы трансформатора. Это выглядит примерно так: На трансформаторное железо наматывается обмотка из изолированного провода. На нее подается переменное напряжение. Под воздействием этого напряжения в железе возникает магнитное поле. А поскольку напряжение переменное, то и поле меняет свою полярность в зависимости от частоты. Теперь, если на это железо намотать вторую обмотку, то в ней будет возникать переменное напряжение. Это магнитное поле наведенное первичной обмоткой будет трансформироваться в напряжение во вторичной. Величина напряжения во вторичной обмотке зависит от количества витков по отношению к первичной. Если витков меньше, то и напряжение будет меньше.
В схеме с трехфазным электропитанием ситуация посложнее. Там при перегрузке одной из фаз напряжение на двух других возрастает (перекос фаз). Для уравнивания напряжений в такой схеме служит нейтральный провод.
По норме точка N должна находиться в центре зеленых линий. При значительной перегрузке одной из фаз происходит «смещение» N в сторону перегрузки и напряжение по фазам меняется (красные линии и жирные цифры).
Порядок включения силовых трансформаторов в работу
Первичное включение силовых трансформаторов в работу, а также запуск трансформаторных подстанций – завершающий этап пуско-наладочных работ. Он выполняется в строгом соответствии с правилами эксплуатации трансформаторных установок и только компаниями, которые имеют лицензию на производство таких работ.
Монтаж и наладка комплекса оборудования перед включением
В процессе осмотра места монтажа и наладки комплекса оборудования перед включением важно оценить степень выполнения правил техники безопасности. Установка не должна представлять угрозу нормальному передвижению обслуживающего персонала (в том числе, и с оснасткой). Если силовой трансформатор установлен на уровне земли, проверяют физико-механические характеристики грунта и его сплошность. Выявленные несоответствия нормативам могут вызвать сдвиг грунта, в результате чего трансформатор или его электрические соединения могут быть повреждены. Если трансформатор установлен на бетонную площадку, то предельное напряжение материала на сдвиг должно составлять от 20 МПа и более. Контролируется также геометрическая форма площадки: она должна иметь скошенные края сверху и снизу, высота которых от каждого конца должна быть не менее 50 мм. Минимальные размеры бетонного основания (бетон – марки не ниже М400) под силовые трансформаторы мощностью 500…2500 кВА составляют: длина – 2400 мм, ширина – 2700 мм, высота – 250 мм.
Если устройство установлено внутри помещения или на крыше здания, необходимо тщательно проанализировать возможное поведение конструкции под нагрузкой и оценить риски нарушения целостности. Особые положения касаются устройств, которые размещаются в сейсмически опасных зонах.
В ходе таких работ постоянно сопоставляется фактическая схема расположения трансформатора с той, которая приведена в инструкции производителя оборудования.
Важно! Все выявленные несоответствия подлежат незамедлительному устранению строительной компанией, ответственной за монтаж устройства.
При каких условиях производится включение трансформатора
Качество пусконаладочных операций улучшится, если придерживаться следующих правил измерения и испытания электрооборудования перед введением его в работу:
Совет: После завершения установки проверяют выходное напряжение устройства.
Условия, при каких производится включение трансформатора, полностью определяют устойчивость его работы и трудоемкость последующего регламентного обслуживания.
Измерения и испытания электрооборудования перед введением в работу
Правилами приёмки силовых трансформаторов предписывается выполнить ряд измерений и испытаний электрооборудования перед введением его в работу. На этапе подготовки определяются с перечнем контролируемых параметров. При стандартных испытаниях устанавливают:
Как происходит первое включение
Существуют также и вспомогательные тесты, которые помогают установить, как происходит первое включение трансформатора:
Испытание трансформаторов тока толчком на номинальное напряжение
При особых условиях эксплуатации выполняют испытание трансформаторов тока толчком на номинальное напряжение. Этим тестом проверяется функционирование устройства в экстремальных условиях. Контроль тока и напряжения осуществляется на понижающей обмотке.
Величины значений напряжения (линия-земля и линия-линия) должны быть очень близкими. Если это не так, питание отключают и вызывают представителя фирмы-производителя.
Проверка работы холостого хода
При совпадении номиналов подключают нагрузку и подают питание на устройство: так можно проверить работу холостого хода. При контроле напряжений и токов нагружение должно быть безударным, и увеличиваться ступенчато, пока не будет достигнута полная нагрузка. И напряжения, и токи должны меняться одинаково. Максимальная длительная нагрузка указывается в паспортных данных.
После установки проверяют выходное напряжение трансформатора. Проверка должна производиться в некоторой безопасной точке доступа к нагрузке, но не в самом устройстве.
Проверяем правильность работы устройства
Для протяженных кабельных трасс падение напряжения существенно возрастает. Когда напряжение на стороне нагрузки низкое, то для поднятия этого параметра следует использовать отводные соединения ниже 100% напряжения сети. Если напряжение на стороне нагрузки высокое, то для его снижения необходимо использовать ответвительные соединения, превышающие 100% линейного напряжения.
Что предпринимать если измеренный ток холостого хода превышает значение
Что предпринимать, если измеренный ток холостого хода превышает значение, приведенное в паспорте? Это возможно, если при монтаже перепутаны отводы, используемые для коррекции сверхвысокого или сверхнизкого входного напряжения линии. Следует дополнительно проверить схему подключения и переподключить отводы, согласно схеме, указываемой на табличке или в инструкции по монтажу.
Важно! Никогда не пытайтесь проверить выходное напряжение на трансформаторе. В корпусе всегда присутствует опасное высокое напряжение.
Устройство и принцип работы трансформаторов
Как работает трансформатор
Трансформатор работает за счет взаимоиндукции. Для начала разберем, что такое индукция.
Что такое индукция
Если по проводу пустить электрический ток, то возникнет магнитное поле.
Магнитное поле — неотъемлемая часть электрического. И в магнитном поле сохраняется энергия электрического.
У постоянных магнитов наличие магнитного поля объясняется направлением «доменов в одну сторону». Т.е. у каждого отдельно взятого атома есть свое маленькое магнитное поле. У постоянных магнитов эти маленькие магнитные поля направлены в одну сторону. Поэтому у постоянного магнита такое сильное магнитное поле.
И другие материалы можно намагнитить, т.е. сделать так, чтобы магнитные поля были направлены в одну сторону. Так получится «искусственно созданный» магнит.
Кстати, среди ремонтников очень популярен магнит, который намагничивает и размагничивает отвертки. Таким отвертками удобно пользоваться, поскольку маленькие болтики и винтики останутся на отвертке и не упадут в случае неосторожного движения.
А индуктивность — это способность материала накапливать магнитное поле, когда по этому материалу течет электрический ток.
Чем больше материал может создать магнитное поле, тем выше его индуктивность.
Магнитное поле можно увеличить, если сделать катушку.
Достаточно взять проволоку, намотать ее на каркас. И магнитные поля витков будут складываться.
Это и есть катушка индуктивности.
Провод в катушке индуктивности должен быть изолирован. Потому, что если хотя бы один виток будет в коротком замыкании с другим, то магнитное поле будет неравномерным. Будет межвитковое замыкание, из-за которого магнитное поле потеряет свою равномерность.
Если мы подаем на катушку постоянный ток, то и магнитное поле будет постоянным. Оно не будет меняться. А что если отключить катушку от источника? Тогда наступит явление самоиндукции. Так как ток уменьшается, то магнитное поле больше нечем поддерживать. И вся так энергия, которая была в магнитном поле, переходит в электрическую.
Изменение магнитного поля создает электрическое поле.
Увеличение индуктивности сердечником
А как увеличить индуктивность? Только с помощью количества витков и диаметром провода? На индуктивность еще влияет окружающая среда. Воздух — не самый лучший материал для накопления или передачи магнитного поля. У него низкая магнитная проницаемость. Тем более, при изменении плотности и температуры воздуха, это значение меняется. Поэтому, для увеличения индуктивности используют ферромагнетики. К ним относят железо, никель, кобальт и др.
Если сделать сердечник в центре катушки из таких материалов, то можно многократно повысить индуктивность катушки.
Из ферромагнетиков делают сердечники (магнитопроводы). В основном используют электротехническую сталь, которую специально делают для этих целей.
Кстати, теперь намного проще регулировать индуктивность с сердечником. Достаточно плавно передвигать сердечник внутри катушки, и индуктивность будет плавно меняться. Это удобнее, чем двигать витки друг от друга.
Взаимоиндукция и принцип передачи тока
Раз можно накопить энергию в катушке за счет магнитного поля, то можно передать эту энергию в другую катушку.
Допустим, есть две одинаковые катушки индуктивности. Одна подключена к питанию, другая нет.
При подключении питания, у первой катушки возникнет магнитное поле. И если приблизить вторую катушку к первой, у второй катушки индуцируется ЭДС за счет магнитного поля первой.
Но ЭДС второй катушки будет не долгим явлением. Если на первую катушку подается постоянное напряжение, то и магнитное поле будет постоянным.
А электрический ток возникает только при переменном магнитное поле. Поэтому, ток во второй катушке сразу исчезнет, как только стабилизируется магнитное поле.
Если поменяем полярность на первой катушке, то и изменится ее магнитное поле. А это значит, что оно будет изменяться и во второй катушке. Это снова индуцирует ток во второй катушке, но не надолго.
Чтобы непрерывно можно было передать ток от первой катушки ко второй, нужен переменный источник тока. Переменный ток создает переменное магнитное поле. А переменное магнитное поле проницая проводник создает в нем переменный наведенный ток.
И поэтому, если на первую катушку будет подано переменное напряжение, то возникнет и переменное магнитное поле. Это магнитное поле индуцирует во второй катушке электромагнитное поле, и ток будет во второй катушке.
Такое явление называют взаимоиндукцией. Когда за счет индуктивности ток из одной части цепи можно передать в другую используя электромагнитное поле.
Многие путают электромагнитную индукцию и взаимоиндукцию. Но это разные явления, хоть и принцип действия во многом схож.
Кроме переменного тока можно использовать и импульсный ток, в котором плюс и минус не меняются местами. Главное выполнять правило — ток должен менять свое значение. И тогда будет переменное магнитное поле.
Кстати, когда работают блоки питания и светильники, издаваемый гул от них — это звук от катушек или их сердечников. Это из-за индукции. Магнитное поле из-за разного направления в катушках частично сдвигает витки и сердечники, отсюда и появляется тот самый звон. Это касается и электродвигателей. Поэтому такие детали заливают смолой или компаундом, чтобы уменьшить издаваемый звук.
Устройство трансформатора
А если катушки будут разными? Тогда можно преобразовать напряжение из одной величины в другую. Так и работает трансформатор. Трансформатор преобразует напряжение с первичной обмотки в напряжение другой величины на вторичной обмотке.
Трансформатор работает только с переменным, импульсным или любым другим током, у которого изменяется значение со временем.
Трансформатор преобразует ток и напряжение, но он не позволяет увеличить мощность. Даже наоборот, из-за нагрева он немного забирает мощность. И не смотря на это, его КПД может доходить вплоть до 99%.
Классический трансформатор
Разберем устройство классического трансформатора.
Основная его функция — это снижение или повышение напряжения для блока питания. Работает за счет сетевого напряжения и низкой частоты (от 50 Гц). Частота переменного тока важна для расчетов.
Классический трансформатор состоит из первичной и вторичной обмотки, а также сердечника (магнитопровода).
На первичную обмотку подается то напряжение, которое нужно преобразовать. А со вторичной обмотки снимают то напряжение, которое получилось за счет взаимоиндукции. Сердечник увеличивает магнитный поток.
Как же происходит преобразование? Все просто. Можно рассчитать индуктивность первичной и вторичной обмотки. Если нужно низкое напряжение, то вторичная обмотка имеет меньше витков, чем первичная. Раз первичная работает за счет сетевого напряжения, то и рассчитывается на 220 В с небольшим запасом из-за колебаний сети.
Напряжение на вторичной обмотке сдвинуто по фазе относительно первичной. Это связано с явлением взаимоиндукции. На графике показана примерная разница по синусоиде.
Трансформаторы могут быть источниками фазовых искажений. Они изменяют сигналы по фазе из-за индуктивности, как показано на графике выше.
На принципиальных схемах классический трансформатор обозначается двумя катушками с сердечником.
Соответственно, если у трансформатора несколько вторичных обмоток, то и количество катушек на схеме будет другим.
Количество обмоток на трансформаторе может быть любым. Могут быть и несколько первичных и вторичных обмоток. А еще есть трансформаторы с общей точкой для двуполярного питания.
Кстати, если вы думаете, что у трансформатора нет сторон, как у диодов или транзисторов, то вы ошибаетесь. У трансформатора тоже есть начало обмотки и конец обмотки. На принципиальных схемах обозначение начала обмотки обозначается точкой и цифрами.
Зачем это надо? Дело в том, что магнитная индукция имеет свое направление, и на этом заложен весь принцип работы схемы. Если подключить обмотку не так, как показано на схеме, то вся схема перестанет работать как изначально задумывалось. Еще как пример можно привести трёхфазные электродвигатели. У них и вовсе для правильной работы важно знать начало и конец обмотки.
Коэффициент трансформации
У трансформаторов есть такое понятие, как коэффициент трансформации. Это отношение его входных и выходных характеристик (отношение количества витков первичной обмотки к вторичной).
Например, если трансформатор понижающий, с 220 В до 12 В, то его коэффициент больше единицы, то есть К 1. У разделительного коэффициент равен 1.
От чего зависит мощность трансформатора
При расчете учитываются следующие параметры:
И все эти значения меняются в зависимости от расчетной мощности и требуемых параметров.
Типы классических трансформаторов
Классические трансформаторы по типу магнитопровода и расположению катушек разделяются на три основных вида:
Броневые чаще всего состоят из Е-пластин (или Ш, как многие называют), которые изолируются друг от друга лаком. В этом типе катушки заключены внутри сердечника как под броней. Поэтому они так и называются.
А еще сердечник может быть ленточным, но расположение катушек от этого не меняется.
Однако в плане эффективности преобразования мощности — это не самый лучший вариант. Магнитный поток получается неравномерным. Да и броневой трансформатор более уязвим к наводкам и помехам извне. Но зато у такого типа есть неоспоримое преимущество. Катушка наматывается достаточно просто, а сборка магнитопровода не составляет особого труда.
Такие трансформаторы чаще всего применяются в мелкогабаритной бытовой технике. Например, их можно часто встретить в мощных звуковых колонках от компьютеров.
Стержневые отличаются особенностями расположения катушек и конструкцией магнитопровода. Такой тип трансформаторов еще называют П-образным. Это связано с тем, что конструктивно сердечник такого трансформатора ленточный, и он собирается из узкой ленты электротехнической стали. И чтобы установить катушки в сердечник, его делают из двух форм в виде буквы П.
После установки двух катушек на первую часть сердечника, вторая часть замыкает ее при окончательной сборке.
Этот тип противоположность броневому. У такого трансформатора обмотки находятся снаружи, а у броневого наоборот, внутри.
Тороидальные трансформаторы являются самыми эффективными, и в тоже время самыми сложными в изготовлении. Сложности изготовления заключаются в том, что сердечник имеет форму тора. Он замкнут, и поместить катушки в сердечник так просто как в стержневых и броневых не получится.
Можно и разъединить трансформаторное железо на две полукруглые части (как П-образный трансформатор), но обмотку не получится намотать. Она будет не такая плотная и ровная.
Поэтому наматывают витки сразу на сердечник. А это намного дольше, да и автоматизировать такой процесс сложнее. Соответственно, и цена на такой трансформатор будет выше.
Режимы работы трансформаторов
Есть три основных режима:
1. Режим холостого хода. Первичная обмотка подключена к сети, но вторичная обмотка не подключена к нагрузке.
2. Режим нагрузки. Это рабочий режим. Первичная обмотка преобразует сетевое напряжение, а вторичная принимает его и подает в нагрузку.
3. Режим короткого замыкания. Вторичная обмотка находится в коротком замыкании. Это аварийный режим для большинства трансформаторов. В этой ситуации он может быстро нагреться и выйти из строя.
Все режимы и их критические параметры также зависят и от типа трансформатора. Например, для трансформатора тока, холостой режим является аварийным.
Импульсные трансформаторы
У импульсных трансформаторов другой тип действия. Они преобразуют напряжение до высоких частот с помощью схемы управления. Конечно из-за этого усложняется схема работы, но это позволяет накапливать большое количество энергии в катушках. Большое преимущество перед классическим трансформаторов — это компактность. Если классический трансформатор на 100 Вт будет большим, то импульсный в десятки раз меньше.
Из недостатков импульсных блоков питания — это наличие импульсных помех. Но и эти помехи удается сглаживать. Поэтому, все блоки питания в компьютерах, ноутбуках и зарядных устройствах чаще всего сделаны на импульсных трансформаторах.
Еще импульсные трансформаторы питают лампы подсветки в мониторах, которые подсвечивают матрицу. Это касается TFT мониторов.
Отличия импульсных трансформаторов от классических
Тезисно можно выделить несколько различий:
А еще, как правило, у импульсных трансформаторов больше обмоток, чем у классических.
Почему сердечник не делают сплошным
Сердечники (магнитопроводы) делают из железных пластин потому, что во время работы появляются токи Фуко. Их называют еще вихревыми токами. Эти токи появляются от наводок обмоток в сердечнике. В итоге сердечник может перегреться, и даже расплавить катушки.
Поэтому, для трансформаторов низкой частоты делают сердечники из изолированных друг от друга пластин.
Пластины могут быть покрыты лаком, или изолированы бумагой между собой. Это уменьшает короткие замыкания в пластинах.
А можно ли сделать сердечник сплошным? Да, так можно сделать. И у импульсных трансформаторов сердечники сделаны из ферромагнитного порошка, у которого частицы друг от друга изолированы. Он называется ферродиэлектрическим сердечником. Но это возможно только на высоких частотах, на которых работает импульсный трансформатор.
Что делает трансформатор
У трансформатора много полезных и важных функций:
Это название неспроста, так как такой трансформатор выполняет функцию строчной развертки. По сути кинескоп — это и есть электронно-лучевая трубка. Поэтому, для работы телевизоров, где используется кинескоп, нужен строчный трансформатор.
Например, выход усилителя 2 кОм, а трансформатор согласует сопротивление и понижает напряжение для щадящей работы динамиков. А на его вторичной обмотке сопротивление всего несколько десятков Ом.
Поэтому, потребитель будет защищен от опасных высоких токов. Именно из-за этого бестрансформаторные блоки питания считаются опасными.
Вопросы об устройстве трансформатора
-Почему зазор между катушками делается минимальным?
Это делается для лучшего контакта магнитных полей. Если зазор будет большим — то и эффективность трансформатора будет низкая.
-А можно ли сделать трансформатор без сердечника аналогичный мощности с сердечником?
Да, но тогда придется увеличивать количество витков, чтобы увеличить магнитный поток. Например, с сердечником у обмоток витки могут быть по несколько тысяч. А без сердечника придется увеличивать магнитный поток за счет витков. И количество витков будет по несколько десяток тысяч. Это не только увеличивает размеры катушек, но и снижает их эффективность и увеличивает шансы перегрева.
-Можно ли подключить понижающий трансформатор как повышающий?
Если у вас есть трансформатор, который понижает сетевое напряжение с 220 В в 12 В, то его можно подключить как повышающий. То есть, вы можете подать на него переменное напряжение 12 В на вторичную обмотку и получить повышенное на первичной 220 В.
-А что будет, если на вторичную обмотку понижающего трансфоратора подать сетевое напряжение?
Тогда обмотка сгорит. Её сопротивление, количество витков и сечение провода не рассчитаны на такие напряжения.
-Можно ли сделать трансформатор самостоятельно своими руками в домашних условия?
Да, это вполне реально. И многие радиолюбители и электронщики этим занимаются. А некоторые еще и зарабатывают. продавая готовую продукцию. Но стоит помнить о том, что это долгий, сложный и не простой труд. Нужны качественные материалы. Это трансформаторное железо, эмалированные медные провода различного сечения, изоляционные материалы.
Все материалы должны быть высокого качества. Если медный провод будет с плохой изоляцией, то возможно межвитковое замыкание, которое неминуемо приведет к перегреву. А для начала нужно рассчитать все параметры будущего трансформатора. Это можно сделать с помощью различных программ, которые доступны в сети.
Далее, это долгие часы сборки. Особенно если вы решили намотать тороидальные трансформатор.
Нужно плотно и равномерно наматывать витки, записывать каждый десяток, чтобы не запутаться и не изменить характеристики будущего преобразователя или блока питания.
-Что будет, если включить трансформатор без сердечника?
Так как трансформатор рассчитывался изначально с сердечником, то и преобразовать полностью напряжение он не сможет. То есть, на вторичке что-то будет, но явно не те параметры. Да и если подключите нагрузку к обмоткам без сердечника, они быстро нагреются и сгорят.
Неисправности трансформаторов
К основным неисправностям трансформаторов можно отнести:
Как проверить на целостность
Трансформатор можно проверить обычным мультиметром. Установите прибор в режим измерения сопротивления и проверьте обмотки.
Они не должны быть в обрыве, никогда. Если нигде обрывов нет, то можно найти первичную и вторичную обмотки при помощи измерения сопротивления. У первичной обмотки понижающего трансформатора сопротивление будет выше, чем у вторичной. Это все из-за количества витков. Чем больше витков и чем меньше диаметр провода — тем больше сопротивление обмотки.
Безопасная проверка работы трансформатора
Если вы решили намотать свой трансформатор или проверить старый, то обязательно подключайте лампочку в разрыв цепи (последовательно!). Если что-то не так произойдет то, лампочка загорится и заберет ток на себя и сможет спасти неисправный трансформатор.
Трансформаторы много где используются. Их конструкция разная и для каждой задачи она по-своему уникальна.
Интересные факты про трансформаторы
Трансформатор — это самый эффективный преобразователь. Его КПД (коэффициент полезного действия) может доходить до 99% (силовые трансформаторы). А вот у ДВС (двигатель внутреннего сгорания), КПД обычно не выше 30%.
Самый эффективный, но в тоже время и самый сложный в изготовлении — это тороидальный трансформатор. Он эффективен благодаря расположению катушек и магнитопроводу. Это усложняет процесс изготовления, особенно в промышленных масштабах.