Начальная скорость автомобиля равна 5 м с после прохождения 40 м
Задача о пути торможения автомобиля
Рассмотрим последовательность прохождения этапов решения задачи на компьютере (см. рис. 2.1) на примере простой задачи.
Водитель автомобиля, движущегося с некоторой постоянной скоростью, увидев красный свет светофора, нажал на тормоз. После этого скорость автомобиля стала уменьшаться каждую секунду на 5 метров. Требуется найти расстояние, которое автомобиль пройдёт до полной остановки.
Первый этап. Дано:
Требуется найти: sx — расстояние, которое автомобиль пройдёт до полной остановки.
Второй этап. В данной ситуации мы имеем дело с прямолинейным равноускоренным движением тела. Формула для перемещения при этом имеет вид:
Третий этап. Представим алгоритм решения задачи в виде блок-схемы:
Четвёртый этап. Запишем данный алгоритм на языке программирования Паскаль:
program n_1;
var v0, s: real;
begin
Пятый этап. Протестировать составленную программу можно, используя информацию, что при скорости 72 км/ч с начала торможения до полной остановки автомобиль проходит 40 метров.
Выполнив программу несколько раз при различных исходных данных, можно сделать вывод: чем больше начальная скорость автомобиля, тем большее расстояние он пройдёт с начала торможения до полной остановки.
Применяя компьютер для решения задач, всегда следует помнить, что наряду с огромным быстродействием и абсолютной исполнительностью у компьютера отсутствуют интуиция и чувство здравого смысла, и он способен решать только ту задачу, программу решения которой ему подготовил человек.
Этапы решения задачи с использованием компьютера:
1) постановка задачи;
2) формализация;
3) алгоритмизация;
4) программирование;
5) компьютерный эксперимент.
Ускорение при равноускоренном прямолинейном движении
теория по физике 🧲 кинематика
Ускорение тела равно отношению изменения вектора скорости ко времени, в течение которого это изменение произошло:
v — скорость тела в данный момент времени, v 0 — скорость тела в начальный момент времени, t — время, в течение которого изменялась скорость
Пример №1. Состав тронулся с места и через 20 секунд достиг скорости 36 км/ч. Найти ускорение его разгона.
Сначала согласуем единицы измерения. Для этого переведем скорость в м/с: умножим километры на 1000 и поделим на 3600 (столько секунд содержится в 1 часе). Получим 10 м/с.
Начальная скорость состава равно 0 м/с, так как изначально он стоял на месте. Имея все данные, можем подставить их в формулу и найти ускорение:
Проекция ускорения
vx — проекция скорости тела в данный момент времени, v0x — проекция скорости в начальный момент времени, t — время, в течение которого изменялась скорость
Знак проекции ускорения зависит от того, в какую сторону направлен вектор ускорения относительно оси ОХ:
При решении задач на тему равноускоренного прямолинейного движения проекции величин можно записывать без нижнего индекса, так как при движении по прямой тело изменяет положение относительно только одной оси (ОХ). Их обязательно нужно записывать, когда движение описывается относительно двух и более осей.
Направление вектора ускорения
Направление вектора ускорения не всегда совпадает с направлением вектора скорости!
Равноускоренным движением называют такое движение, при котором скорость за одинаковые промежутки времени изменяется на одну и ту же величину. При этом направления векторов скорости и ускорения тела совпадают ( а ↑↑ v ).
Равнозамедленное движение — частный случай равноускоренного движения, при котором скорость за одинаковые промежутки времени уменьшается на одну и ту же величину. При этом направления векторов скорости и ускорения тела противоположны друг другу ( а ↑↓ v ).
Пример №2. Автомобиль сначала разогнался, а затем затормозил. Во время разгона направления векторов его скорости и ускорения совпадают, так как скорость увеличивается. Но при торможении скорость уменьшается, потому что вектор ускорения изменил свое направление в противоположную сторону.
График ускорения
График ускорения — график зависимости проекции ускорения от времени. Проекция ускорения при равноускоренном прямолинейном движении не изменяется (ax=const). Графиком ускорения при равноускоренном прямолинейном движении является прямая линия, параллельная оси времени.
Зависимость положения графика проекции ускорения относительно оси ОХ от направления вектора ускорения:
Если график ускорения лежит на оси времени, движение равномерное, так как ускорение равно 0. Скорость в этом случае — величина постоянная.
Чтобы сравнить модули ускорений по графикам, нужно сравнить степень их удаленности от оси времени независимо от того, лежат они выше или ниже нее. Чем дальше от оси находится график, тем больше его модуль. На рисунке график 2 находится дальше от оси времени по сравнению с графиком один. Поэтому модуль ускорения тела 2 больше модуля ускорения тела 1.
Пример №3. По графику проекции ускорения найти участок, на котором тело двигалось равноускорено. Определить ускорение в момент времени t1 = 1 и t2 = 3 с.
В промежуток времени от 0 до 1 секунды график ускорения рос, с 1 до 2 секунд — не менялся, а с 2 до 4 секунд — опускался. Так как при равноускоренном движении ускорение должно оставаться постоянным, ему соответствует второй участок (с 1 по 2 секунду).
Чтобы найти ускорение в момент времени t, нужно мысленно провести перпендикулярную прямую через точку, соответствующую времени t. От точки пересечения с графиком нужно мысленно провести перпендикуляр к оси проекции ускорения. Значение точки, в которой пересечется перпендикуляр с этой осью, покажет ускорение в момент времени t.
На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.
К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.
Алгоритм решения
Решение
График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:
Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.
График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.
График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.
Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.
График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».
График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».
pазбирался: Алиса Никитина | обсудить разбор | оценить
Алгоритм решения
Решение
Запишем исходные данные:
Формула, которая связывает ускорение тела с пройденным путем:
Так как скорость растет, ускорение положительное, поэтому перед ним в формуле поставим знак «+».
Выразим из формулы ускорение:
Подставим известные данные и вычислим ускорение автомобиля:
pазбирался: Алиса Никитина | обсудить разбор | оценить
Внимательно прочитайте текст задани я и выберите верный ответ из списка. На рисунке приведён график зависимости проекции скорости тела vx от времени.
Какой из указанных ниже графиков совпадает с графиком зависимости от времени проекции ускорения этого тела ax в интервале времени от 6 с до 10 с?
Алгоритм решения
Решение
Согласно графику проекции скорости в интервале времени от 6 с до 10 с тело двигалось равнозамедленно. Это значит, что проекция ускорения на ось ОХ отрицательная. Поэтому ее график должен лежать ниже оси времени, и варианты «а» и «в» заведомо неверны.
Чтобы выбрать между вариантами «б» и «г», нужно вычислить ускорение тела. Для этого возьмем координаты начальной и конечной точек рассматриваемого участка:
Используем для вычислений следующую формулу:
Подставим в нее известные данные и сделаем вычисления:
Этому значению соответствует график «г».
pазбирался: Алиса Никитина | обсудить разбор | оценить
Алгоритм решения
Решение
Записываем формулу ускорения:
По условию задачи нужно найти модуль ускорения, поэтому формула примет следующий вид:
Выбираем любые 2 точки графика. Пусть это будут:
Подставляем данные формулу и вычисляем модуль ускорения:
pазбирался: Алиса Никитина | обсудить разбор | оценить
Начальная скорость автомобиля, движущегося прямолинейно и равноускоренно, равна 5 м / с?
Начальная скорость автомобиля, движущегося прямолинейно и равноускоренно, равна 5 м / с.
После прохождения расстояния 40 м его скорость оказалась равной 15 м / с.
Чему равно ускорение?
Из формулы перемещения при равноускоренном движении S = ( v + v0) * t / 2
подставляем в формулу ускорения
Определите начальную скорость автомобиля, движущегося прямолинейно, который, начав тормозить с ускорением 1 м / с ^ 2, за 5 с проходит расстояние 20 м?
Определите начальную скорость автомобиля, движущегося прямолинейно, который, начав тормозить с ускорением 1 м / с ^ 2, за 5 с проходит расстояние 20 м.
Тело двигаясь прямолинейно равноускоренного за первые 5 с прошло 7?
Тело двигаясь прямолинейно равноускоренного за первые 5 с прошло 7.
5м найдите ускорение тела если его начальная скорость была равна нулю.
Тело движется прямолинейно и равномерно?
Тело движется прямолинейно и равномерно.
Меняется ли при этом его скорость?
Чему равно ускорение тела?
Скорость автомобиля движущего прямолинейно равноускоренно, за 3с увеличилась с 3м / с до 15м / с?
Скорость автомобиля движущего прямолинейно равноускоренно, за 3с увеличилась с 3м / с до 15м / с.
Определите ускорение автомобиля.
Как определяется скорость точки, движущейся равноускоренно с начальной скоростью, не равной нулю?
Как определяется скорость точки, движущейся равноускоренно с начальной скоростью, не равной нулю?
Начальная скорость автомобиля, движущегося прямолинейно и равноускоренно, равна 5 м / с?
Начальная скорость автомобиля, движущегося прямолинейно и равноускоренно, равна 5 м / с.
После прохождения расстояния 40 м его скорость оказалась равной 15 м / с.
Чему равно ускорение?
Время торможения автомобиля, движущегося с ускорением 5 м / с равно 4 с?
Время торможения автомобиля, движущегося с ускорением 5 м / с равно 4 с.
Вычислите начальную скорость автомобиля.
Начальная скорость самосвала, движущегося прямолинейно и равноускоренно, равна 5 м / с?
Начальная скорость самосвала, движущегося прямолинейно и равноускоренно, равна 5 м / с.
Его конечная скорость через 10 с равна 15м / с.
Какой путь за это время прошёл самосвал?
Чему равно центростремительное ускорение автомобиля, движущегося со скоростью 40 км / час по круговой дороге радиусом 20 м?
Чему равно центростремительное ускорение автомобиля, движущегося со скоростью 40 км / час по круговой дороге радиусом 20 м?
За первые три секунды своего движения равноускоренно движущееся тело прошло расстояние 18м?
За первые три секунды своего движения равноускоренно движущееся тело прошло расстояние 18м.
Чему равна ускорение тела.
Начальная скорость автомобиля равна 5 м с после прохождения 40 м
Автомобиль массой 2 т проезжает верхнюю точку выпуклого моста, двигаясь с постоянной по модулю скоростью 36 км/ч. Радиус кривизны моста равен 40 м. Из приведённого ниже списка выберите все правильные утверждения, характеризующих движение автомобиля по мосту.
1) Равнодействующая сил, действующих на автомобиль в верхней точке моста, сонаправлена с его скоростью.
2) Сила, с которой мост действует на автомобиль в верхней точке моста, меньше 20 000 Н и направлена вертикально вниз.
3) В верхней точке моста автомобиль действует на мост с силой, равной 15 000 Н.
5) Ускорение автомобиля в верхней точке моста направлено противоположно его скорости.
Переведем скорость
Рассмотрим рисунок, поясняющий движение автомобиля по выпуклому мосту.
1. Неверно. Равнодействующая сил реакции опоры N и силы тяжести mg по второму закону Ньютона сонаправлена с вектором ускорения. А т. к. автомобиль движется по окружности, то ускорение направлено к центру окружности, т. е. вниз. Следовательно, и равнодействующая направлена вниз. Скорость автомобиля при движении по окружности направлена по касательной (в данном случае — горизонтально).
2. Неверно. Сила, с которой мост действует на автомобиль — сила реакции опоры — направлена вертикально вверх.
3. Верно. Сила, с которой автомобиль действует на мост, равна весу тела. По третьему закону Ньютона P = N. Найдём силу реакции опоры по второму закону Ньютона Центростремительное ускорение равно
Значит, Р = 15 кН.
4. Верно. (см. пункт 3).
5. Неверно. Вектор ускорения направлен вертикально вниз, вектор скорости — горизонтально (см. пункт 1).
Начальная скорость автомобиля равна 5 м с после прохождения 40 м
Автомобиль движется по прямой улице. На графике представлена зависимость скорости автомобиля от времени. Чему равен максимальный модуль ускорения? Ответ выразите в метрах на секунду в квадрате.
На всех рассматриваемых интервалах времени скорость автомобиля меняется равномерно, следовательно, ускорение на каждом интервале постоянно. Рассчитаем ускорения:
в интервале от 0 до 10 с:
в интервале от 10 до 20 с:
в интервале от 20 до 30 с:
в интервале от 30 до 40 с:
Первый способ решения(для трудолюбивых)
1. Определяем цену деления по осям.
2. Нахожу ускорения на каждом участке:
III-участок: (10-20)/10 =-1
IV-участок: (15-10)/10 =1,5
Второй способ (для продвинутых)
a=tg(альфа), угол >, то и а>
Здравствуйте! Я не очень понимаю, а как определить величину наклона.
Величиной наклона здесь называется параметр, который показывает, насколько быстро увеличивается (или уменьшается) функция. Его можно измерять, например, тангенсом угла наклона графика, тогда это будет в точности ускорение. Но так как здесь не спрашивается величина ускорения, можно просто посмотреть на график и найти на нем участок, где функция изменяется «круче» всего. Это и даст участок с максимальным по модулю ускорением.
Тело разгоняется на прямолинейном участке пути, при этом зависимость пройденного телом пути S от времени t имеет вид:
Чему равна скорость тела в момент времени t = 2 c при таком движении? (Ответ дайте в метрах в секунду.)
При равноускоренном движении зависимость пройденного телом пути от времени в общем виде имеет вид
Сравнивая с выражением, данным в условии, заключаем, что оно укладывается в это общее правило, а значит тело двигалось равноускоренно. Сопоставляя конкретные члены в выражениях получаем, что начальная скорость равна а ускорение
Таким образом, скорость тела в момент времени
равна
:
vt=t(v0 +(at)/2) делим обе части на t
У Вас ошибка в первой формуле
— это формула для равномерного движения, можно ее с натяжкой использовать и для равноускоренного движения, но тогда под v надо понимать среднее арифметическое начальной и конечной скоростей (или значение скорости в середине исследуемого промежутка времени). В нашем случае, Вы таким образом получаете скорость в момент времени 1 с.
Лучше всего, запомните закон изменения скорости при равноускоренном движении
А правильно ли будет решить математическим способом:найти производную,а потом подставить вместо t=2?
Дифференциальный анализ придумали физики, чтобы решать приблизительно вот такие вот задачи. Так что спокойно можете использовать свои знания и умения, если Вы уверены в них. Главное — это получить правильный результат, способ его получения не столь важен.
Спасибо за формулу!
Не за что, обращайтесь 🙂
в задаче говорится про прямолинейное движение, а вы описываете равноускоренное. это правильно? объясните пж)
Слово «прямолинейное» означает лишь, что траектория — прямая линия. Двигаться вдоль этой прямой тело может абсолютно произвольно. В данном случае движение равноускоренное.
Спасибо,рассматривая следующую задачу поняла методику их решения
Здравствуйте, а можно ли эту задачу решить, применяя производную?
Здравствуйте, скажите, как нашли a=2 м/с^2?
— общий вид,
— по условию,
значит,
При прямолинейном движении зависимость координаты тела x от времени t имеет вид:
Чему равна скорость тела в момент времени t = 2 c при таком движении? (Ответ дайте в метрах в секунду.)
При равноускоренном движении зависимость координаты тела x от времени в общем виде следующая:
Сравнивая с выражением, данным в условии, получаем, что проекция начальной скорости равна а ускорение
Таким образом, скорость тела в момент времени
равна
Скажите пожалуйста, как вы нашли а? (а=v/t)
Самый просто способ нахождения ускорения по известному закону изменения координаты со временем — описан в решении. Нужно сравнить конкретный закон с общей формулой для равноускоренного движения. Коэффициент при
— это половина ускорения.
Если Вы хорошо ориентируетесь в дифференциальном исчислении, то можно поступить следующим образом: ускорение — это вторая производная координаты по времени. Имеем
,
что-то не могу понять никак
Давайте еще раз, более подробно.
Внимательно смотрим на данный нам в задаче закон изменения координаты со временем
Замечаем, что координата квадратично зависит от времени, вспоминаем, что это характерно для движения с постоянным ускорением. Выписываем общую формулу для координаты при таком движении.
Здесь — начальное положение тела в момент времени
;
— начальная скорость;
— ускорение.
Сравнивая конкретную формулу из условия и общую формулу получаем, что , следовательно, ускорение равно
.
Теперь применяем формулу для скорости при равноускоренном движении
Для момента времени имеем:
Он применим для абсолютной любой зависимости координаты тела от времени, даже для случаев, когда тело двигается с переменным ускорением, но для того, чтобы его использовать необходимо: 1) уметь вычислять производные функций; 2) понимать, что скорость тела в некоторый момент времени — это производная координаты по времени в этот момент времени.
Для данной конкретной задачи. Закон изменения координаты имеет вид
Продифференцируем эту функцию по времени и получим функцию, описывающую изменение скорости со временем (штрих обозначает производную по времени)
Поставим в эту формулу момент времени и получим искомую величину.
Пример более сложного случая. Пусть координата изменяется по закону
Тут координата уже кубично зависит от времени, это не равноускоренное движение, ускорение меняется со временем, а значит, первый способ применить нельзя. Воспользуемся вторым
Скорость меняется квадратично со временем. В момент времени она равна