Некий мистер смит ехал в машине вместе со своим сыном артуром

Логические задачи и головоломки

Некий мистер Смит ехал в машине вместе со своим сыном Артуром. Их машина попала в катастрофу. Отец погиб на месте, а сын в тяжелом состоянии доставлен в ближайшую больницу. Взглянув на пострадавшего, дежурный хирург побледнел и сказал: «Я не могу оперировать его. Ведь это же мой сын Артур!»

Как вы это объясните?

Ответ: Хирург был матерью Артура Смита.

Комментарии

Правильнее тогда писать: «дежурный хирург побледнелА и сказалА»

Хирург существительное мужского рода грамотей.

Это просто иностраная загадка которая неправельно переведена!

ответ неординарный чтоб всех вас помирить и не портить лицо переводчику. хирург был родным(приемным) отцом. )

может некий мистер Смит не все знал про свою жену? 😉

Я чето непонял почему если это его мать, то она не может его оперировать?

не принято у хирургов оперировать родственников. дабы не завалить

Если не папа значит мама!

Семья нетрадиционная ММ

Мне очень нравиться этот автор,жалко что в математической области у него только две книжки.

Если хирург не мать Артура, то он мог успеть жениться на бедной вдове, иди же состоять в однополом браке с покойным.

просто мистер смит-лжец:)))

Просто Артур воспитан в семье геев! Оо

В условии не сказано, что отец Артура погиб на месте!Там сказано:»Отец погиб на месте, а сын в тяжелом состоянии. » С ними ехал дед Артура, то есть отец Смита, который и погиб на месте, а Смит не стал оперировать сына.

Кто то из них был отчим,у ребенка было 2 отца

Хирург Иванова ПОБЛЕДНЕЛ и СКАЗАЛ.
Моя твоя не понимай.

И тут гейская пропаданда!

На русском языке эта задача не имеет смысла, так как дежурный хирург побледнел и сказал. У нас предпочтительным родом является род человека а не его профессии. Хирург побледнела и сказала.

Это был однополый брак!

На мой взгляд, решение есть у этой задачи даже при заданной формулировке.

Что имеем в итоге. Хирург получается отец этого Артура Смита, а он как следствие является сыном. В условии же не сказано, чей именно сын в тяжёлом состоянии. А Артур младший мог как раз погибнуть в качестве отца. Ведь он тоже мог быть чьим-то отцом.
Так что, при данном рассуждении, изжёванная фраза «дежурный хирург побледнел и сказал» вполне имеет место быть.

Хирург оказался генетическим отцом пострадавшего.

Источник

Некий мистер смит ехал в машине вместе со своим сыном артуром

Как же называется эта книга?

© Raymond M. Smullyan, 1978

© Перевод. Ю. Данилов, наследники, 2021

© Издание на русском языке AST Publishers, 2021

Что может быть более далеким от истины, чем представление о математике как о застывшей науке, давно остановившейся в своем развитии и превратившейся в своего рода свод правил для решения задач? Однако такое превратное представление об одной из самых быстро развивающихся наук современности бытует у очень многих. Между тем математика непрестанно меняет свой облик, пополняет свой арсенал новыми идеями, мощными и гибкими методами, расширяет сферу приложений, черпает новые постановки задач не только из логики внутреннего развития, но и из других областей науки.

Столь странное противоречие объясняется тем, что между рубежами, завоеванными современной математикой, и традиционно читаемыми «устоявшимися» курсами математики существует разрыв, красочно описанный замечательным представителем этой науки, педагогом и популяризатором Гуго Штейнгаузом: «В математике несравненно явственней, чем в других дисциплинах, ощущается, насколько растянуто шествие всего человечества. Среди наших современников есть люди, чьи познания в математике относятся к эпохе более древней, чем египетские пирамиды, и они составляют значительное большинство. Математические познания незначительной части людей дошли до эпохи Средневековья, а уровня математики XVIII века не достигает и один на тысячу… Но расстояние между теми, кто идет в авангарде, и необозримой массой путников все возрастает, процессия растягивается, и идущие впереди отдаляются все более и более. Они скрываются из виду, их мало кто знает, о них рассказывают удивительнейшие истории. Находятся и такие, кто просто не верит в их существование».

«Растянутость шествия всего человечества» особенно ощутима, когда речь заходит не о рецептурной, алгоритмической, а об «идейной» стороне математики.

С незапамятных времен математические рассуждения считаются общепризнанным эталоном доказательности, достойным всяческого подражания (достаточно упомянуть «Этику» Спинозы, «изложенную на геометрический манер», или «Математические начала натуральной философии» Ньютона). Строгость математических доказательств, непреложность получаемых с их помощью выводов, незыблемость математических истин вошли в поговорку. Но прописные истины, подобно разменной монете, от частого употребления стираются и теряют в весе. Доверять им по меньшей мере неосмотрительно, а получить достоверную информацию о действительном положении вещей нелегко не только для человека далекого от математики, но и для математика, не занимающегося специально проблемами оснований математики и математической логики. Те, кто, желая похвалить обоснованность чьей-либо аргументации, с легкостью называют ее математически строгой и безупречной, как правило, не в состоянии объяснить, что означает «доказать», почему доказательство «доказывает», или ответить, всякое ли утверждение можно доказать или опровергнуть. Подобные вопросы способны поставить в тупик и несравненно более искушенного в математике нематематика, который умеет вычислить значение истинности таких высказываний, как «Речка движется и не движется», или импликации «“Если” гром не грянет, “то” мужик не перекрестится», знает, чем исключающее «или» (Либо пан, либо пропал) отличается от неисключающего (Надобно либо уменье, либо везенье, «а лучше всего и то, и другое»), постиг различие между причинно-следственной связью и импликацией и усвоил немало других премудростей алгебры логики.

Простота подобных вопросов обманчива, их наивность иллюзорна. Они затрагивают тонкие и глубокие проблемы теории логического вывода и оснований математики, над решением которых трудилось не одно поколение логиков, математиков и философов. При всей общности понимания того, что составляет существо математического доказательства и преемственности поколений, каждая эпоха вносит свой вклад в недостижимый идеал математической строгости, вводя поправки и дополнения в то, что было сделано ранее.

Предлагаемая вниманию читателя книга американского ученого Рэймонда М. Смаллиана, известного своими работами в области математической логики, опровергает известные слова Пифагора о том, что в математику нет царской дороги. Перед ее читателем открывается редкая, чтобы не сказать уникальная, возможность проникнуть в существо одного из величайших достижений математической логики нашего века – в доказательство знаменитой теоремы Гёделя о неполноте. По занимательности, динамичности и напряженности действия книга Смаллиана не уступает лучшим образцам приключенческого жанра. Намного превосходя по глубине научного содержания большинство научно-популярных произведений и даже отдельные сугубо научные издания, книга Смаллиана помогает читателю совершить головокружительное восхождение от «дурацких штучек» (как автор называет элементарные логические задачи, не требующие для своего решения ничего, кроме находчивости, внимания и здравого смысла) к одной из вершин современной математической логики, на покорение которой обычно приходится затрачивать немало сил и средств. Попутно автор знакомит читателя со своенравной Порцией и ее не менее своенравными прапра…правнучками до N-го колена, проницательным инспектором Крэгом, искусными мастерами Челлини и Беллини, приглашает побывать на островах, населенных рыцарями, неизменно говорящими правду, и столь же неукоснительно лгущими лжецами, побывать в замке графа Дракулы Задунайского и, пережив множество увлекательных приключений, завершить необычайное путешествие на гёделевых и дважды гёделевых островах.

С непостижимой ловкостью фокусника (не все ученые коллеги автора знают, что в годы аспирантуры он выступал в этом качестве на профессиональной эстраде) Смаллиан демонстрирует новые, порой весьма неожиданные варианты известных задач, изобретает необычайно изящные головоломки собственной конструкции, раскрывая перед читателем логику «во всем ее блеске и великолепии».

Профессор Смаллиан умеет неопровержимо доказать, что либо он, либо читатель не существует, причем неизвестно, какая из альтернатив истинна! Чтобы постичь столь высокое искусство доказательства, необходимо внимательно прочитать его книгу. Поэтому пока мы ограничимся утверждением (с истинностью которого не может не согласиться даже тот, кто не читал книги), что книга Смаллиана с неуловимо исчезающим названием «Как же называется эта книга?» (попробуйте объяснить кому-нибудь, как она называется, и вы поймете, что имеется в виду) попадет в руки либо читателю, интересующемуся математикой, либо читателю, для которого математика не представляет ни малейшего интереса (хотя заранее неизвестно, какая альтернатива уготована тому или иному экземпляру книги). С неменьшей уверенностью можно утверждать, что и тот и другой прочитают ее с интересом и пользой.

Посвящается Линде Ветцель и Джозефу Бевандо, чьи мудрые советы были для меня неоценимы

Я хочу от души поблагодарить…

Прежде всего моих добрых друзей Роберта и Ильзу Коуэн и их десятилетнюю дочь Ленору, прочитавших рукопись этой книги и высказавших множество полезных советов. (В частности, Ленора угадала правильный ответ на ключевой вопрос главы 4: существует ли Трулюлю в действительности или его выдумал Шалтай-Болтай?)

Выражаю свою искреннюю признательность Григу и Мелвину Фиттингамт (авторам чудесной и полезной книги «Во славу простых вещей») за их интерес к моей работе и за то, что они обратили на нее внимание Оскара Коллиера из издательства «Прентис-холл». Думаю, что мне следует особо поблагодарить Мелвина за то, что он возник в этой книге (опровергнув своим появлением мое доказательство того, что он никак не мог бы появиться!).

Работать с Оскаром Коллиером и другими сотрудниками издательства «Прентис-холл» для меня было удовольствием. Миссис Илене Макгрэт, перепечатавшая рукопись книги, высказала много полезных советов, которые я с благодарностью принял. Выражаю признательность Дороти Лахман, весьма изобретательно находившей нужные детали и оттенки.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *