Неподвижная часть электрической машины имеющих вращающуюся часть

Устройство электрической машины постоянного тока

Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть фото Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть картинку Неподвижная часть электрической машины имеющих вращающуюся часть. Картинка про Неподвижная часть электрической машины имеющих вращающуюся часть. Фото Неподвижная часть электрической машины имеющих вращающуюся часть

Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть фото Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть картинку Неподвижная часть электрической машины имеющих вращающуюся часть. Картинка про Неподвижная часть электрической машины имеющих вращающуюся часть. Фото Неподвижная часть электрической машины имеющих вращающуюся часть

Электрическая машина состоит из двух частей:

I неподвижная часть.

II подвижная часть.

Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть фото Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть картинку Неподвижная часть электрической машины имеющих вращающуюся часть. Картинка про Неподвижная часть электрической машины имеющих вращающуюся часть. Фото Неподвижная часть электрической машины имеющих вращающуюся часть

Неподвижная часть электрической машины состоит из:

Как корпус станина служит для:

— крепления остальных деталей машины

— для защиты внутренних деталей машины от пыли, грязи и т.д.

— для защиты потребителей (людей) от вращающихся частей машины.

Как магнитопровод станина служит для замыкания по ней основного магнитного потока.

Станина изготавливается литьём из стали высокой прочности и высокой магнитной проницаемости.

2. Главные полюса служат для создания основного магнитного потока (магнитного поля).

— сердечника (магнитопровода), набранного из отдельных листов электротехнической стали для уменьшения потерь на вихревые токи.

— обмотки главных полюсов (обмотки возбуждения магнитного потока) изготавливаются из медного провода круглого сечения.

— полюсные наконечники имеют вид верхушки синусоиды для того, чтобы магнитная индукция в зазоре между полюсами изменялась бы по синусоидальному закону.

а) если электрическая машина работает в режиме генератора, то электрический ток проходит по цепочке: обмотка якоря – коллектор – щетки – нагрузка (потребитель) во внешней цепи.

б) если электрическая машина работает в режиме электродвигателя, то ток проходит по цепочке: внешний источник питания – щетки – коллектор – обмотка якоря

Щетки изготавливаются из графита с добавлением порошка меди для повышения электропроводности и устойчивости к стиранию. Щетки взаимозаменяемы без дополнительного разбора конструкции электрической машины.

5. Боковые крышкимашины с подшипниковыми узлами закрывают машину по бокам и служат для крепления вала.

Подвижная часть электрической машины состоит из:

а) если машина работает в режиме генератора, то при вращении якоря в обмотке якоря возникает ЭДС.

б) если машина работает в режиме двигателя, то от внешнего источника питания ток попадает в обмотку якоря, в результате чего якорь начинает вращаться.

Якорь выполняет роль магнитопровода и набирается из отдельных листов электротехнической стали для уменьшения потерь на вихревые токи. В теле якоря сверлят вентиляционные каналы, по которым проходит охлаждающий воздух.

Проводники обмотки якоря закрепляются во внешних пазах якоря. Каждый проводник обмотки якоря припаивается к соответствующей пластине коллектора.

Различают генераторы независимого возбуждения и генераторы с самовозбуждением. В генераторах независимого возбуждения основной магнитный поток создается либо постоянным магнитом, либо электромагнитом (обмоткой возбуждения), питаемым от источника постоянного тока. Генераторы независимого возбуждения находят применение в схемах автоматики, в двигатель-генераторных агрегатах, когда требуется изменять не только значение, но и полярность напряжения на зажимах, а также в качестве тахогенераторов, предназначенных для дистанционного измерения частоты вращения. Недостатком этих машин является необходимость иметь отдельный источник энергии для питания обмотки возбуждения или постоянные магниты.

В генераторах с самовозбуждением питание обмотки главных полюсов осуществляется напряжением самого генератора. При этом отпадает необходимость в отдельном источнике питания. В зависимости от схемы включения обмотки возбуждения различают генераторы параллельного, последовательного и смешанного возбуждения. Генераторы постоянного тока параллельного возбуждения находят широкое применение в качестве бортовых источников питания, на подвижных объектах: кораблях, самолетах, автомобилях.

Генераторы последовательного возбуждения используют редко.

Генераторы со встречным включением обмоток используют в качестве сварочных генераторов.

Свойства электродвигателей постоянного тока определяются в основном способом включения обмотки возбуждения. В зависимости от этого различают электродвигатели: 1) с независимым возбуждением: обмотка возбуждения питается от постороннего источника постоянного тока; 2) с параллельным возбуждением : обмотка возбуждения подключена параллельно обмотке якоря; 3) с последовательным возбуждением : обмотка возбуждения включена последовательно с обмоткой якоря; 4) со смешанным возбуждением : он имеет две обмотки возбуждения, одна подключена параллельно обмотке якоря, а другая – последовательно с ней. Двигатели с последовательным возбуждением применяют во всех тяговых приводах (электровозы, тепловозы, Электропоезда, электрокары), а также в приводах грузоподъемных механизмов

3. Устройство асинхронного двигателя с фазным ротором

Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть фото Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть картинку Неподвижная часть электрической машины имеющих вращающуюся часть. Картинка про Неподвижная часть электрической машины имеющих вращающуюся часть. Фото Неподвижная часть электрической машины имеющих вращающуюся часть

Асинхронный двигатель – простейший из электрических машин, имеет 2 основные части статор и ротор. Статор состоит из чугунной станины, к которой закреплен магнитопровод в виде полого цилиндра, между станиной и сердечником оставлен зазор через который проходит охлаждающий воздух. Для уменьшения потерь на вихревые токи магнитопровод набирают из тонких листов электротехнической стали, изолированных друг от друга лаком. В пазы, вырезанные по внутренней окружности статора укладывают обмотку и закрепляют клиньями. Ротор набирают из тонких листов электротехнической стали, в пазах ротора размещают фазную обмотку. Устройство фазной обмотки ротора аналогично устройству обмотки статора. Концы фазной обмотки ротора соединяют с контактными кольцами и через щетки соединяют с регулировочными или пусковыми реостатами. Контактные кольца из латуни или меди укрепляются на валу двигателя с помощью изолирующих прокладок. Щеткодержатель с угольными или медно-графитовыми щетками крепят на подшипниковом щите.

Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть фото Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть картинку Неподвижная часть электрической машины имеющих вращающуюся часть. Картинка про Неподвижная часть электрической машины имеющих вращающуюся часть. Фото Неподвижная часть электрической машины имеющих вращающуюся часть

Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть фото Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть картинку Неподвижная часть электрической машины имеющих вращающуюся часть. Картинка про Неподвижная часть электрической машины имеющих вращающуюся часть. Фото Неподвижная часть электрической машины имеющих вращающуюся часть

4. Принцип действия асинхронного двигателя

Основан на использовании вращающегося магнитного поля и основных законах электротехники. При включении двигателя в сеть трехфазного тока в статоре образуется вращающееся магнитное поле, силовые линии которого пересекают стержни или катушки обмотки ротора. Согласно закону электромагнитной индукции, в обмотке ротора создается ЭДС пропорционально частоте пересечения силовых линий и в короткозамкнутом роторе возникают значительные токи. По закону Ампера на проводники с током, находящиеся в магнитном поле, действуют силы, которые по принципу Ленца стремятся устранить причину вызывающую ток. Таким образом ротор раскручивается в направлении вращения поля и вращается с частотой меньшей частоты вращения поля, то есть не синхронно с полем, или асинхронно.

5. Скольжение и частота вращения ротора асинхронного двигателя

Частота вращения магнитного поля статора – n1, а частота вращения ротора- n2, причем n2

Дата добавления: 2018-06-01 ; просмотров: 1569 ; Мы поможем в написании вашей работы!

Источник

Устройство электрической машины постоянного тока

Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть фото Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть картинку Неподвижная часть электрической машины имеющих вращающуюся часть. Картинка про Неподвижная часть электрической машины имеющих вращающуюся часть. Фото Неподвижная часть электрической машины имеющих вращающуюся часть

Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть фото Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть картинку Неподвижная часть электрической машины имеющих вращающуюся часть. Картинка про Неподвижная часть электрической машины имеющих вращающуюся часть. Фото Неподвижная часть электрической машины имеющих вращающуюся часть

Электрическая машина состоит из двух частей:

I неподвижная часть.

II подвижная часть.

Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть фото Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть картинку Неподвижная часть электрической машины имеющих вращающуюся часть. Картинка про Неподвижная часть электрической машины имеющих вращающуюся часть. Фото Неподвижная часть электрической машины имеющих вращающуюся часть

Неподвижная часть электрической машины состоит из:

Как корпус станина служит для:

— крепления остальных деталей машины

— для защиты внутренних деталей машины от пыли, грязи и т.д.

— для защиты потребителей (людей) от вращающихся частей машины.

Как магнитопровод станина служит для замыкания по ней основного магнитного потока.

Станина изготавливается литьём из стали высокой прочности и высокой магнитной проницаемости.

2. Главные полюса служат для создания основного магнитного потока (магнитного поля).

— сердечника (магнитопровода), набранного из отдельных листов электротехнической стали для уменьшения потерь на вихревые токи.

— обмотки главных полюсов (обмотки возбуждения магнитного потока) изготавливаются из медного провода круглого сечения.

— полюсные наконечники имеют вид верхушки синусоиды для того, чтобы магнитная индукция в зазоре между полюсами изменялась бы по синусоидальному закону.

а) если электрическая машина работает в режиме генератора, то электрический ток проходит по цепочке: обмотка якоря – коллектор – щетки – нагрузка (потребитель) во внешней цепи.

б) если электрическая машина работает в режиме электродвигателя, то ток проходит по цепочке: внешний источник питания – щетки – коллектор – обмотка якоря

Щетки изготавливаются из графита с добавлением порошка меди для повышения электропроводности и устойчивости к стиранию. Щетки взаимозаменяемы без дополнительного разбора конструкции электрической машины.

5. Боковые крышкимашины с подшипниковыми узлами закрывают машину по бокам и служат для крепления вала.

Подвижная часть электрической машины состоит из:

а) если машина работает в режиме генератора, то при вращении якоря в обмотке якоря возникает ЭДС.

б) если машина работает в режиме двигателя, то от внешнего источника питания ток попадает в обмотку якоря, в результате чего якорь начинает вращаться.

Якорь выполняет роль магнитопровода и набирается из отдельных листов электротехнической стали для уменьшения потерь на вихревые токи. В теле якоря сверлят вентиляционные каналы, по которым проходит охлаждающий воздух.

Проводники обмотки якоря закрепляются во внешних пазах якоря. Каждый проводник обмотки якоря припаивается к соответствующей пластине коллектора.

Различают генераторы независимого возбуждения и генераторы с самовозбуждением. В генераторах независимого возбуждения основной магнитный поток создается либо постоянным магнитом, либо электромагнитом (обмоткой возбуждения), питаемым от источника постоянного тока. Генераторы независимого возбуждения находят применение в схемах автоматики, в двигатель-генераторных агрегатах, когда требуется изменять не только значение, но и полярность напряжения на зажимах, а также в качестве тахогенераторов, предназначенных для дистанционного измерения частоты вращения. Недостатком этих машин является необходимость иметь отдельный источник энергии для питания обмотки возбуждения или постоянные магниты.

В генераторах с самовозбуждением питание обмотки главных полюсов осуществляется напряжением самого генератора. При этом отпадает необходимость в отдельном источнике питания. В зависимости от схемы включения обмотки возбуждения различают генераторы параллельного, последовательного и смешанного возбуждения. Генераторы постоянного тока параллельного возбуждения находят широкое применение в качестве бортовых источников питания, на подвижных объектах: кораблях, самолетах, автомобилях.

Генераторы последовательного возбуждения используют редко.

Генераторы со встречным включением обмоток используют в качестве сварочных генераторов.

Свойства электродвигателей постоянного тока определяются в основном способом включения обмотки возбуждения. В зависимости от этого различают электродвигатели: 1) с независимым возбуждением: обмотка возбуждения питается от постороннего источника постоянного тока; 2) с параллельным возбуждением : обмотка возбуждения подключена параллельно обмотке якоря; 3) с последовательным возбуждением : обмотка возбуждения включена последовательно с обмоткой якоря; 4) со смешанным возбуждением : он имеет две обмотки возбуждения, одна подключена параллельно обмотке якоря, а другая – последовательно с ней. Двигатели с последовательным возбуждением применяют во всех тяговых приводах (электровозы, тепловозы, Электропоезда, электрокары), а также в приводах грузоподъемных механизмов

3. Устройство асинхронного двигателя с фазным ротором

Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть фото Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть картинку Неподвижная часть электрической машины имеющих вращающуюся часть. Картинка про Неподвижная часть электрической машины имеющих вращающуюся часть. Фото Неподвижная часть электрической машины имеющих вращающуюся часть

Асинхронный двигатель – простейший из электрических машин, имеет 2 основные части статор и ротор. Статор состоит из чугунной станины, к которой закреплен магнитопровод в виде полого цилиндра, между станиной и сердечником оставлен зазор через который проходит охлаждающий воздух. Для уменьшения потерь на вихревые токи магнитопровод набирают из тонких листов электротехнической стали, изолированных друг от друга лаком. В пазы, вырезанные по внутренней окружности статора укладывают обмотку и закрепляют клиньями. Ротор набирают из тонких листов электротехнической стали, в пазах ротора размещают фазную обмотку. Устройство фазной обмотки ротора аналогично устройству обмотки статора. Концы фазной обмотки ротора соединяют с контактными кольцами и через щетки соединяют с регулировочными или пусковыми реостатами. Контактные кольца из латуни или меди укрепляются на валу двигателя с помощью изолирующих прокладок. Щеткодержатель с угольными или медно-графитовыми щетками крепят на подшипниковом щите.

Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть фото Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть картинку Неподвижная часть электрической машины имеющих вращающуюся часть. Картинка про Неподвижная часть электрической машины имеющих вращающуюся часть. Фото Неподвижная часть электрической машины имеющих вращающуюся часть

Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть фото Неподвижная часть электрической машины имеющих вращающуюся часть. Смотреть картинку Неподвижная часть электрической машины имеющих вращающуюся часть. Картинка про Неподвижная часть электрической машины имеющих вращающуюся часть. Фото Неподвижная часть электрической машины имеющих вращающуюся часть

4. Принцип действия асинхронного двигателя

Основан на использовании вращающегося магнитного поля и основных законах электротехники. При включении двигателя в сеть трехфазного тока в статоре образуется вращающееся магнитное поле, силовые линии которого пересекают стержни или катушки обмотки ротора. Согласно закону электромагнитной индукции, в обмотке ротора создается ЭДС пропорционально частоте пересечения силовых линий и в короткозамкнутом роторе возникают значительные токи. По закону Ампера на проводники с током, находящиеся в магнитном поле, действуют силы, которые по принципу Ленца стремятся устранить причину вызывающую ток. Таким образом ротор раскручивается в направлении вращения поля и вращается с частотой меньшей частоты вращения поля, то есть не синхронно с полем, или асинхронно.

5. Скольжение и частота вращения ротора асинхронного двигателя

Частота вращения магнитного поля статора – n1, а частота вращения ротора- n2, причем n2

Дата добавления: 2018-06-01 ; просмотров: 1570 ; Мы поможем в написании вашей работы!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *