Переделка компьютерного блока питания atx в зарядное устройство для автомобиля
Несложная переделка АТХ в зарядное устройство своими руками
В первой статье (https://sdelaysam-svoimirukami.ru/7634-prostaja-peredelka-ath-v-zarjadnoe-ustrojstvo.html) я рассказывал как переделать блок питания АТХ. Реализовал регулировку тока и напряжения.
Теперь нужно сделать регулировку под свои нужды.
Диапазон напряжения выставлю от 5-6 до 15 вольт. Ток остается без изменения. Почему именно так? Зарядное устройство будет служить для зарядки 6 и 12 вольтовых аккумуляторов. Есть еще одна загвоздка, но о ней позже.
Кратко о схеме
Зеленым цветом выделены комплектующие, которые я добавил. Последовательно с регулятором «Напряжение», я добавил резистор 3.3 кОм. Так ограничил минимальное напряжение. Последовательно с резистором 2.7 кОм, с первой ноги, установил резистор 4.7 кОм. Так получилось ограничить максимальное напряжение. На выходе блока питания установил цепочку из диода и предохранителя. Получилась простейшая защита от переполюсовки. В случае неправильного подключения аккумулятора, ток проходит через диод и сгорает предохранитель. Вентилятор подключил на питание микросхемы ШИМ. Установил резистор 68 Ом, мощностью 2 Ватта, для ограничения излишков напряжения. Питание микросхемы порядка 22 Вольт.
Основные детали
Применю советские резисторы, у них у меня нашлась пара ручек.
Так вот о выходном напряжении. Я купил не тот индикатор, а он питается от измеряемого напряжения. Питание его составляет от 4.5 Вольт. Поэтому и напряжение выдрал от 5-6 Вольт.
Сетевой выключатель от старого телевизора.
Предохранитель установлю через крепление. Он стандартный автомобильный, поставлю на 10 ампер.
Плата у меня была без корпуса, нашел подходящий.
Переделка блока компьютера в зарядное устройство своими руками
Разметил и вырезал все отверстия. Покрасил его из баллончика. Красил чем было, еле хватило на корпус. Не ней видны все отпечатки.
Установил плату в корпус. Прикрутил резисторы и выключатель.
Установил провода с крокодилами. Провода в двойной изоляции, два провода в параллель. Каждый провод по 0.5 вк. мм. Получилось неплохо.
Ах, да. Минимальное напряжение на фото.
Максимальное 15,5 Вольт. Я заменил резистор регулировки напряжения, поэтому чуть отличается выходное напряжение от первоначального.
Так блок выглядит со стороны сетевого кабеля и предохранителя.
Переделывайте блоки питания под свои нужды. Блоки сейчас доступны недорого. Схемы примерно похожи. Остается убрать лишнее и добавить недостающее. Схема переделки актуальна для большинства блоков АТХ.
Смотрите видео
Как из старого блока питания компьютера сделать зарядное устройство
При модернизации компьютеров блок питания в большинстве случаев подлежит замене – он уже не тянет новые нагрузки. В итоге вполне исправный источник питающего напряжения ПК остается не у дел. А у тех, кто занимается апгрейдом регулярно, скапливаются горы таких устройств без дальнейшей перспективы установки в компьютеры – мало кому сейчас нужен источник мощностью в 250-350 ватт.
Для таких БП можно найти другое применение – например, в качестве зарядного устройства для аккумуляторов. Переделка в большинстве случаев минимальна, и ее можно сделать своими руками.
Схема ЗУ
Если рассмотреть структурную схему импульсного блока питания стандарта ATX, то можно обнаружить, что это практически готовое зарядное устройство. Надо лишь удалить из нее все излишнее и добавить несложные цепи регулировки. В зарядном устройстве не понадобятся:
Источник дежурного напряжения, в принципе, не нужен, но от него питается микросхема ШИМ, его надо оставить хотя бы частично. Заряжать аккумуляторы надо в режимах стабилизации напряжения или тока, поэтому придется добавить соответствующие цепи для установки необходимых уровней.
Блок питания стандарта AT содержит еще меньше избыточных цепей (в нем нет источника дежурного напряжения), но его найти сейчас не так просто.
Самостоятельное изготовление устройства
Самостоятельное изготовление зарядного устройства надо начать с поиска принципиальной схемы на имеющийся блок питания. В этом поможет интернет. Чем точнее будет совпадение реального устройства со схемой, тем лучше. Далее надо определить, какого типа ЗУ нужно (со стабилизацией напряжения или дополнительно со стабилизацией тока). После этого можно приступать к анализу работы схемы и планировать переделки.
Подготовка радиодеталей
Радиодеталей понадобится по минимуму:
Еще понадобятся вольтметр и амперметр для индикации выходных параметров. Можно применить стрелочные, можно современные цифровые (но не стоит уповать на их высокую точность).
Простой зарядник для автомобильных аккумуляторов 12 вольт
Свинцовые автомобильные аккумуляторы заряжаются в режиме постоянного напряжения (ток при этом падает). Поэтому возникает мысль изготовить зарядное устройство для такой АКБ из компьютерного блока питания. Для исправной батареи емкостью 60 А*ч нормальный ток заряда составляет 3-6 ампера, для глубоко разряженной – до 10 А при стабильном напряжении около 14 вольт. Такой ток может обеспечить даже относительно маломощный БП от компьютера (от 250 Вт).
При всем разнообразии схем исполнения БП стандарта ATX, широко распространены блоки питания на микросхемах – формирователях ШИМ TL494 (или аналогах). Пример переделки в зарядное устройство есть смысл рассмотреть для блоков, построенных на этом электронном компоненте.
В первую очередь надо удалить все лишние жгуты с разъемами. оставив один-два желтых провода (+12 вольт) и один-два черных (0 вольт).
Следующим шагом следует отключить цепи сигнала Power_ON, по которым материнская плата управляет БП. Для этого надо перерезать дорожку, идущую к выводам 13-14-15 микросхемы. После этого схема будет запускаться при подаче сетевого напряжения 220 вольт. Другой вариант – припаять перемычку между контактной площадкой зеленого провода и общей шиной.
Если есть желание, можно полностью удалить часть схемы, обведенную голубой линией. Это немного повысит энергоэффективность зарядника за счет снижения расхода на питание участка схемы и несколько улучшит тепловой режим внутри корпуса БП. Также можно удалить элементы выпрямителей ненужных напряжений. При удалении можно ориентироваться на цвет проводов из таблицы.
Цвет провода | Напряжение, В |
---|---|
Черный | 0 В (земля, общий провод) |
Красный | +5 |
Оранжевый | +3,3 |
Желтый | +12 |
Белый | -5 |
Синий | -12 |
Зеленый | +5 Power_ON |
Серый | +5 PG |
Фиолетовый | +5 Stand by (дежурное напряжение) |
Коричневый | +3,3 Sense |
Второй этап переделки – создание возможности регулировки выходного напряжения. Для компьютера надо иметь на выходе 12 вольт, для зарядного устройства побольше – до 14,5 вольт минимум. А если регулировать выходной уровень вниз, можно будет заряжать и шестивольтовые аккумуляторы. Для этого надо удалить лишние резисторы, подключенные к выводу 1 микросхемы, и установить вместо них потенциометр на 100 кОм. После этого добавится возможность настраивать уровень выходного напряжения примерно от 6 до 16 вольт, чего хватит для большинства случаев, с которыми можно столкнуться на практике.
Самый «дорогостоящий» этап (с учетом того, что все предыдущие действия практически не требуют материальных затрат) – добавление амперметра и вольтметра. Удобно использовать цифровой блок измерения тока-напряжения.
Органы регулировки и измерения надо вывести на панель получившегося зарядника, и тут дизайн ограничен только собственной фантазией. Также надо найти место для размещения клемм для подключения заряжаемого аккумулятора.
Важно! Схемы контроля уровня заряда данное устройство не имеет. Перед началом зарядки надо выставить напряжение около 14 вольт и проконтролировать зарядный ток. Если он велик (у глубоко разряженной АКБ), надо несколько уменьшить напряжение до получения тока в 6-7 ампер. По мере зарядки ток упадет, напряжение можно вновь повысить до 14-14,5 вольт. При падении зарядного тока до примерно 0,1..0,15 А, аккумулятор полностью зарядится и процедуру надо прекратить.
Зарядное устройство с регулировкой тока
Некоторые типы аккумуляторов требуют зарядки стабильным током. Такой зарядник тоже можно сделать из блока питания компьютера. Надо лишь ввести дополнительные цепи регулировки и измерения тока. В первую очередь надо оторвать средний вывод импульсного трансформатора от земли и в разрыв включить измерительный шунт – сопротивление, замеряя напряжение на котором, можно вычислить ток. Шунт можно взять от стрелочного амперметра. Лучше найти сопротивление в виде спирали – для него проще выделить место при тесном монтаже. Можно попробовать в качестве шунта использовать печатный проводник между средним выводом и общей шиной, но тут успех зависит от топологии разводки платы.
Дальше надо очистить от посторонних элементов ножки 15 и 16 микросхемы, и 16 вывод соединить с общим проводом. Верхний по схеме вывод шунта (средний вывод трансформатора) подключается к ноге 15 через резистор около 270 Ом (окончательный номинал подбирается при наладке). Для регулировки к тому же выводу 15 подключается цепь из резистора 10 кОм и потенциометра (от 1..2 до 20 кОм, какой будет под рукой). В итоге получится зарядное устройство с регулировкой напряжения и максимального тока, которое можно во многих случаях применять и в качестве лабораторного источника питания.
Тестирование переделки
До включения в сеть к зарядному устройству надо подключить нагрузку. На холостом ходу импульсный источник включать, а тем более тестировать, не рекомендуется. В качестве нагрузки удобно применять автомобильные лампы накаливания на напряжение 12 вольт и потребную мощность (для первоначальной проверки устройство можно нагрузить током 10..50% от номинала). Вместо лампочек можно применить магазин сопротивлений.
Дальше надо подготовить схему для включения источника в сеть. Для этого в разрыв одного сетевого провода надо включить лампу накаливания (подобно предохранителю). Если переделка БП прошла успешно, то при включении в сеть лампа гореть не будет или будет тускло светиться. Можно продолжать проверку дальше – лампа влияния не окажет. Если нить ярко светится, значит, в БП есть проблема, и ее надо найти и устранить. Лампа в этом случае ограничивает ток – автомат не выбьет.
Если первое включение прошло нормально, можно проверить пределы регулировки напряжения. Это можно сделать с помощью встроенного вольтметра, а еще лучше дополнительно проконтролировать напряжение мультиметром прямо на нагрузке. Если границы уровней регулирования не устраивают, можно подобрать сопротивление потенциометра до достижения нужного результата. Далее подключая больше или меньше лампочек к выходу в параллель, можно проверить границы регулировки тока. Их уточняют с помощью подбора резистора в цепи измерения (начальное значение – 270 Ом). Если все проходит штатно и результаты проверки устраивают пользователя, можно подключать аккумулятор и пробовать его заряжать.
В завершении для наглядности рекомендуем серию тематических видео.
Зарядное устройство на основе блока питания ATX
У компьютерного блока питания, наряду с такими преимуществами, как малые габариты и вес при мощности от 250 Вт и выше, есть один существенный недостаток – отключение при перегрузке по току. Этот недостаток не позволяет использовать БП в качестве зарядного устройства для автомобильного аккумулятора, поскольку у последнего в начальный момент времени зарядный ток достигает нескольких десятков ампер. Добавление в БП схемы ограничения тока позволит избежать его отключения даже при коротком замыкании в цепях нагрузки.
Зарядка автомобильного аккумулятора происходит при постоянном напряжении. При этом методе в течение всего времени заряда напряжение зарядного устройства остается постоянным. Заряд аккумулятора таким методом в ряде случаев предпочтителен, так как он обеспечивает более быстрое доведение батареи до состояния, позволяющего обеспечить запуск двигателя. Сообщаемая на первоначальном этапе заряда энергия тратится преимущественно на основной зарядный процесс, то есть на восстановление активной массы электродов. Сила зарядного тока в первоначальный момент может достигать 1,5С, однако для исправных, но разряженных автомобильных аккумуляторов такие токи не принесут вредных последствий, а наиболее распространённые БП ATX мощностью 300 – 350 Вт не в состоянии без последствий для себя отдать ток более 16 – 20А.
Максимальный (начальный) зарядный ток зависит от модели используемого БП, минимальный ток ограничения 0,5А. Напряжение холостого хода регулируется и для заряда стартёрного аккумулятора может составлять 14…14,5В.
Для изготовления ЗУ выбран БП модели FSP ATX-300PAF. Схема вторичных цепей БП рисовалась по плате, и несмотря на тщательную проверку, незначительные ошибки, к сожалению, не исключены.
На рисунке ниже представлена схема уже доработанного БП.
220V, идущие от выключателя на задней стенке БП, выпаиваются из платы, напряжение будет подаваться сетевым шнуром.
В первую очередь деактивируем цепь PSON для включения БП сразу после подачи сетевого напряжения. Для этого вместо элементов R49, C28 устанавливаем перемычки. Убираем все элементы ключа, подающего питание на трансформатор гальванической развязки Т2, управляющего силовыми транзисторами Q1, Q2 (на схеме не показаны), а именно R41, R51, R58, R60, Q6, Q7, D18. На плате БП контактные площадки коллектора и эмиттера транзистора Q6 соединяются перемычкой.
После этого подаем
220V на БП, убеждаемся в его включении и нормальной работе.
Удаляем элементы R69, R70, C27 сигнальной цепи PG.
Включаем БП, убеждаемся в его работоспособности.
Затем отключается защита по превышению напряжения +5В. Для этого выв.14 FSP3528 (контактная площадка R69) соединяется перемычкой с цепью +5Vsb.
На печатной плате вырезается проводник, соединяющий выв.14 с цепью +5V (элементы L2, C18, R20).
Выпаиваются элементы L2, C17, C18, R20.
Включаем БП, убеждаемся в его работоспособности.
Отключаем защиту по превышению напряжения +3,3В. Для этого на печатной плате вырезаем проводник, соединяющий выв.13 FSP3528 с цепью +3,3V (R29, R33, C24, L5).
Далее, не проверяя работоспособность БП, отключаем защиту по цепи +12В. Отпаиваем чип-резистор R12. В контактной площадке R12, соединённой с выв. 15 FSP3528 сверлится отверстие 0,8 мм. Вместо резистора R12 добавляется сопротивление, состоящее из последовательно соединённых резисторов номинала 100 Ом и 1,8 кОм. Один вывод сопротивления подсоединяется к цепи +5Vsb, другой – к цепи R67, выв. 15 FSP3528.
Отпаиваем элементы цепи ООС +5V R36, C47.
Конденсатор C13 3300х16В желательно заменить на конденсатор 3300х25В и такой же добавить на место, освободившееся от C24, чтобы разделить между ними токи пульсаций. Плюсовой вывод С24 через дроссель (или перемычку) соединяется с цепью +12V1, напряжение +14В снимается с контактных площадок +3,3V.
Включаем БП, подстройкой VR1 устанавливаем на выходе напряжение +14В.
После всех внесённых в БП изменений переходим к ограничителю. Схема ограничителя тока представлена ниже.
Резисторы R1, R2, R4…R6, соединённые параллельно, образуют токоизмерительный шунт сопротивлением 0,01 Ом. Ток, протекающий в нагрузке, вызывает на нём падение напряжения, которое ОУ DA1.1 сравнивает с опорным напряжением, установленным подстроечным резистором R8. В качестве источника опорного напряжения используется стабилизатор DA2 с выходным напряжением 1,25В. Резистор R10 ограничивает максимальное напряжение, подаваемое на усилитель ошибки до уровня 150 мВ, а значит, максимальный ток нагрузки до 15А. Ток ограничения можно рассчитать по формуле I = Ur/0,01, где Ur, В – напряжение на движке R8, 0,01 Ом – сопротивление шунта. Схема ограничения тока работает следующим образом.
Выход усилителя ошибки DA1.1 подсоединён с выводом резистора R40 на плате БП. До тех пор, пока допустимый ток нагрузки меньше установленного резистором R8, напряжение на выходе ОУ DA1.1 равно нулю. БП работает в штатном режиме, и его выходное напряжение определяется выражением: Uвых=((R34/(VR1+R40))+1)*Uоп. Однако, по мере того, как напряжение на измерительном шунте из-за роста тока нагрузки увеличивается, напряжение на выв.3 DA1.1 стремится к напряжению на выв.2, что приводит к росту напряжения на выходе ОУ. Выходное напряжение БП начинает определяться уже другим выражением: Uвых=((R34/(VR1+R40))+1)*(Uоп-Uош), где Uош, В – напряжение на выходе усилителя ошибки DA1.1. Иными словами, выходное напряжение БП начинает уменьшаться до тех пор, пока ток, протекающий в нагрузке, не станет чуть меньше установленного тока ограничения. Состояние равновесия (ограничения тока) можно записать так: Uш/Rш=(((R34/(VR1+R40))+1)*(Uоп-Uош))/Rн, где Rш, Ом – сопротивление шунта, Uш, В – напряжение падения на шунте, Rн, Ом – сопротивление нагрузки.
ОУ DA1.2 используется в качестве компаратора, сигнализируя с помощью светодиода HL1 о включении режима ограничения тока.
Печатная плата (под «утюг») и схема расположения элементов ограничителя тока изображена на рисунках ниже.
Несколько слов о деталях и их замене. Электролитические конденсаторы, установленные на плате БП FSP, имеет смысл заменить на новые. В первую очередь в цепях выпрямителя дежурного источника питания +5Vsb, это С41 2200х10V и С45 1000х10V. Не забываем о форсирующих конденсаторах в базовых цепях силовых транзисторов Q1 и Q2 – 2,2х50V (на схеме не показаны). Если есть возможность, конденсаторы выпрямителя 220В (560х200V) лучше заменить на новые, большей ёмкости. Конденсаторы выходного выпрямителя 3300х25V должны быть обязательно с низким ЭПС – серии WL или WG, в противном случае они быстро выйдут из строя. В крайнем случае, можно поставить б/у конденсаторы этих серий на меньшее напряжение – 16В.
Прецизионный ОУ DA1 AD823AN «rail-to-rail» как нельзя кстати подходит к данной схеме. Однако его можно заменить на порядок более дешёвым ОУ LM358N. При этом стабильность выходного напряжения БП будет несколько хуже, также придется подбирать номинал резистора R34 в меньшую сторону, поскольку у этого ОУ минимальное выходное напряжение вместо нуля (0,04В, если быть точным) 0,65В.
Максимальная суммарная рассеиваемая мощность токоизмерительных резисторов R1, R2, R4…R6 KNP-100 равна 10 Вт. На практике лучше ограничиться 5 ваттами – даже при 50% от максимальной мощности их нагрев превышает 100 градусов.
Диодные сборки BD4, BD5 U20C20, если их действительно стоит 2шт., менять на что-либо более мощное не имеет смысла, обещанные производителем БП 16А они держат хорошо. Но бывает так, что в действительности установлена только одна, и в этом случае необходимо либо ограничиться максимальным током в 7А, либо добавить вторую сборку.
Испытание БП током 14А показало, что уже спустя 3 минуты температура обмотки дросселя L1 превышает 100 градусов. Долговременная безотказная работа в таком режиме вызывает серьёзное сомнение. Поэтому, если подразумевается нагружать БП током свыше 6-7А, дроссель лучше переделать.
Остаётся установить плату ограничителя тока в корпус БП. Проще всего её прикрутить к торцу радиатора.
Подключим цепь «ООС» регулятора тока к резистору R40 на плате БП. Для этого вырежем часть дорожки на печатной плате БП, которая соединяет вывод резистора R40 с «корпусом», а рядом с контактной площадкой R40 просверлим отверстие 0,8мм, куда будет вставлен провод от регулятора.
Подключим питание регулятора тока +5В, для чего припаяем соответствующий провод к цепи +5Vsb на плате БП.
Индикаторы HL1 «Питание» и HL2 «Ограничение» закрепляются на месте заглушки, установленной вместо переключателя «110V-230V».
Скорее всего, в вашей розетке отсутствует контакт защитного заземления. Вернее, контакт, может быть, и есть, а вот провод к нему не походит. Про гараж и говорить нечего… Настоятельно рекомендуется хотя бы в гараже (подвале, сарае) организовать защитное заземление. Не стоит игнорировать технику безопасности. Это иногда заканчивается крайне плачевно. Тем, у кого розетка 220В не имеет контакта заземления, оборудуйте БП внешней винтовой клеммой для его подключения.
После всех доработок включаем БП и корректируем подстроечным резистором VR1 требуемое выходное напряжение, а резистором R8 на плате ограничителя тока – максимальный ток в нагрузке.
Подключаем дроссель пассивной коррекции коэффициента мощности, питание 220В от выключателя, прикручиваем плату в корпус. Фиксируем нейлоновой стяжкой выходной кабель зарядного устройства.
Прикручиваем крышку. Зарядное устройство готово к работе.
В заключение стоит отметить, что ограничитель тока будет работать с БП ATX (или AT) любого производителя, использующего ШИМ-контроллеры TL494, КА7500, КА3511, SG6105 или им подобным. Разница между ними будет заключаться лишь в методах обхода защит.
Ниже вы можете скачать печатную плату ограничителя в формате PDF и DWG (Autocad)