Первая механическая счетная машина появилась в 1642
Устройство Леонардо да Винчи
Машина Шиккарда
Первая механическая машина была описана в 1623 г. профессором математики Тюбингенского университета Вильгельмом Шиккардом, реализована в единственном экземпляре и предназначалась для выполнения четырех арифметических операций над 6-разрядными числами.
Машина Паскаля
Первая действующая модель счетной суммирующей машины была создана в 1642 г. знаменитым французским ученым Блезом Паскалем. Для выполнения арифметических операций Паскаль заменил поступательное перемещение костяшек в абаковидных инструментах на вращательное движение оси (колеса), так что в его машине сложению чисел соответствовало сложение пропорциональных им углов.
Машина Паскаля была практически первым суммирующим механизмом, построенным на совершенно новом принципе, при котором считают колеса. Она производила на современников огромное впечатление, о ней слагались легенды, ей посвящались поэмы. Все чаще с именем Паскаля появлялась характеристика «французский Архимед». До нашего времени дошло только 8 машин Паскаля, из которых одна является 10-разрядной.
Машина Бэббиджа
В 1822 г. Бэббидж приступил к осуществлению проекта так называемой разностной машины, предназначенной для расчета навигационных и астрономических таблиц. Машину эту строили десять лет, но так и не закончили. Финансовые трудности усугублялись тем, что изобретатель постоянно пересматривал конструкцию и вносил в нее бесчисленные усовершенствования.
И вот в 1833 г., приостановив работы над разностной машиной, Бэббидж начал осуществлять проект универсальной автоматической машины для любых вычислений. Это устройство, обеспечивающее автоматическое выполнение заданной программы вычислений, он назвал аналитической машиной.
Для создания памяти, где хранилась информация, Бэббидж использовал не только колесные регистры, но и большие металлические диски с отверстиями. В памяти на дисках хранились таблицы значений специальных функций, которые использовались в процессе вычислений.
Машина Лейбница
Другие машины
В о второй половине XIX века появилось целое поколение механических счетных машин. Здесь и «вычислительный снаряд» Слонимского, и оригинальные счетные машины Фельта, Берроуза, Боле, и арифмометр П. Л. Чебышёва.
Лишь много лет спустя, с применением электропривода, оригинальные идеи, заложенные в конструкции Чебышева, нашли свое признание. Непрерывная, плавная передача позволяла значительно увеличить скорость работы механических устройств с большей надежностью.
Несколько позже, в 1974 г., петербургским механиком Вильгодтом Однером была создана новая конструкция числового колеса с выдвижными зубьями. Число выдвинутых зубьев определялось углом поворота установочного рычажка до соответствующей цифры на шкале. Колесо Однера оказалось настолько совершенным, что не претерпело принципиальных изменений до наших дней. Арифмометр «Феликс», являющийся модификацией арифмометра Однера, выпускался у нас в стране вплоть до 50-х годов.
Развитие счётных машин
с древних времён
до наших дней
Можно подумать, будто счётная машина — это современное явление. Однако человечество стало изобретать устройства для счёта задолго до того, как появились первые компьютеры.
Самыми первыми человеческими помощниками в счёте были пальцы. С их помощью наши далёкие предки указывали друг другу, сколько охотников нужно, чтобы окружить и загнать зверя. Добыча тоже требовала счёта — нужно было определить, сколько мяса получат члены племени. Так что скоро пяти пальцев стало не хватать. Поэтому древние люди начали считать с помощью камешков и костей, раскладывая их на песке в неверном свете костра.
Однако со временем количество палочек росло, и скоро понадобились обозначения для десятков и сотен. Счёт был нужен, чтобы высчитывать срок появления на свет детей, вести учёт отёла скота и знать, когда взойдут посевы, чтобы предсказывать солнечные и лунные затмения. Также исследователи уверены, что важной вехой в развитии счёта стала торговля. Как объяснить, что пять шкур равны десяти корзинам мяса? Или тридцати мешкам овощей? Появилась необходимость в универсальных обозначениях, а человеческое мышление совершило восхождение к абстракции, обратившись к идее чисел как таковых.
Какие же инструменты помогали человечеству?
Древние люди делали зарубки на костях и камнях и носили эти палочки с собой, либо оставляли чёрточки на стенах жилищ. Одно из самых старинных устройств, которое не так уж далеко ушло от костей на полу пещеры — это, конечно, счёты. По сути они представляют собой те же кости (деревяшки, камушки), только нанизанные на спицы, которые закреплялись в раме.
Их близкий родственник — счётная доска абак, которая появилась в Вавилоне около пяти тысяч лет назад. Очевидно, что её появлению мы обязаны бурной вавилонской торговле. Если классические счёты, какими их знают в России, опираются на позиционную десятичную систему счисления, то вавилонский абак использовал шестидесятеричную. Такой оригинальный способ счёта происходит, как и большинство систем счисления, от пропорций человеческого тела — если говорить точнее, от числа фаланг пальцев на одной руке (не считая большого).
Вариации счётных досок были во всех древних культурах. В Японии они называются соробан, в Китае — суньпань. Римляне делали счёты из металла, передвигая костяшки в пазах металлической доски, а ацтеки — из кукурузных зёрен. Инки использовали для подсчёта зёрен «многоэтажное» устройство под названием юпана.
Самые первые помощники человечества в счете
Кость с зарубками, обнаруженная в Дольни-Вестонице. Её возраст — почти 30 000 лет.
Древнеримский абак. Реконструкция
Японские дети собирают соробаны на заводе. 1949 г.
Однако люди всегда стремились упростить себе жизнь, создавая всё более сложные устройства, которые бы взяли необходимость считать на себя. С ростом городов и развитием промышленности потребность в них только увеличилась. В XVII столетии появились логарифмические таблицы и линейки. Шотландский математик Джон Непер изобрёл счётный прибор, известный как палочки Непера. Снискав на время большую популярность, палочки Непера, однако, вскоре были заброшены. А вот арифмометр оказался перспективнее. Изобретённый ещё в античности, в эпоху Просвещения он был переоткрыт и получил заслуженное признание. Ранее схему похожего на арифмометр механизма изображал Леонардо да Винчи, который, как обычно, опередил своё время: тогда его идея успеха не имела.
Как развивались счётные машины?
В общем виде счётная машина представляет собой устройство, работающее на зубчатых колёсах и цилиндрах, которое производит четыре основных математических действия. Записывающие счётные машины также могут автоматически фиксировать результаты на ленте. Принцип счёта основан на поразрядном сложении и сдвиге суммы частных произведений. Свои версии арифмометра создали Блез Паскаль, спроектировавший в 1646 году суммирующую машину «паскалина», и Готфрид Вильгельм Лейбниц: в его арифмометре была ручка, вращение которой ускоряло повторяющиеся операции.
Также следует упомянуть вычислительную машину, разработанную Чарльзом Бэббиджем в XIX столетии. Она могла производить вычисления с точностью до двадцатого знака, подходила для операций с логарифмами и тригонометрическими функциями. Программа для неё была составлена Адой Лавлейс, первой женщиной-программистом, да и вообще первым программистом в мире. Именно ей принадлежат термины «цикл» и «рабочая ячейка».
Арифмометр Блеза Паскаля. 1642 г.
Арифмометр Лейбница. 1673 г.
Элемент аналитической машины Чарльза Бэббиджа. 1910 г.
Существовало множество моделей счётных машин. Например, карманный арифмометр Curta, выпущенный в 1948 году, был размером с человеческий кулак.
В конце XIX века изобретатель Уильям Берроуз запатентовал свой арифмометр и основал компанию по производству компьютерной техники Burroughs Corporation. Его сын продолжил дело, а вот внук, тоже Уильям Берроуз, интересовался литературой куда больше, чем вычислительными машинами, и стал одной из значимых фигур поколения битников.
Арифмометры выпускали марки Facit и Mercedes (не тот, что выпускает автомобили: производитель офисной техники судился с автоконцерном за название, договорившись в результате о том, что у каждой компании своя сфера деятельности). А в СССР самым популярным арифмометром был названный в честь Дзержинского «Феликс», который выпускался заводом «Счётмаш» до 1978 года.
Обладая характерной для механических устройств красотой, арифмометры всё-таки имели существенные недостатки. Порядок действий всегда задавался вручную, поэтому результат счёта сильно зависел от внимательности оператора, которому требовалось нажимать на клавишу для выполнения каждого действия. Арифмометры имели хождение вплоть до второй половины ХХ века, когда их окончательно вытеснили электронные счётные устройства.
Лихтенштейнский карманный арифмометр Curta. 1948 г.
Советский арифмометр «Феликс»
Уильям Берроуз, который любил печатные машинки гораздо больше, чем счётные. 1959 г., Париж. Loomis Dean—Time & Life Pictures/Getty Images
Электронный прорыв
Настоящий прорыв в развитии вычислительной техники случился в 60-х годах ХХ века.
В 1957 году японская компания Casio выпустила первый полностью электронный калькулятор 14-А. Событие было эпохальным, потому что открыло новую эру в мире счёта, но жизнь офисных работников и инженеров эта модель не изменила, ведь весил калькулятор целых 140 кг.
Первым компактным, а значит, массовым, калькулятором стал Anita, выпущенный английской компанией Bell в 1961 году. Он работал на газоразрядных лампах и был оснащён клавишами ввода числа и множителя. С тех пор функции калькуляторов становились всё более серьёзными, а сами калькуляторы — всё более лёгкими и умными.
Например, в 1965 году появился первый настольный электронный калькулятор со встроенной памятью Casio 001. Весил он всего 17 килограмм, что по тем временам для машины, способной запоминать операции, было вовсе не много, а два года спустя появился первый настольный программируемый калькулятор Casio AL-1000.
Однако пользователям калькуляторов было и этого мало, ведь счётное устройство куда удобнее держать в руке и носить с собой. Так появились калькуляторы Sharp и Canon, которые весили менее килограмма.
«Электроника»
Вот ещё несколько эпохальных инноваций от японской марки Casio, которые существенно изменили представления о том, на что способны калькуляторы.
Появился карманный калькулятор Casio Mini, продажи которого побили все рекорды. А через некоторое время компания выпустила миниатюрную версию, Casio Mini Card, размером с кредитную карту.
Компания выпустила калькулятор FX-7000G — первый в мире программируемый графический калькулятор, доступный широкой публике, с матричным дисплеем, имеющем разрешение 96×64 пикселя. Эта модель может отображать как встроенные графики, так и построенные пользователем. В дополнение к режиму графического отображения калькулятор имеет функцию программирования на языке Бейсик.
Пять лет спустя на прилавках появился калькулятор Casio CFX-9800G, в котором впервые появилась возможность делать графики в разных цветах. По сути, был добавлен цветной дисплей. В отличие от современных экранов, он был трёхцветным и работал на отражённом свете. Это дало возможность рисовать каждый график своим цветом, что делало графические отображения функций куда более наглядными.
Casio выпускает устройство CASIO ClassPad 300 — первый калькулятор с большим сенсорным экраном. Модель имела систему компьютерной алгебры (CAS), которая позволяет производить преобразования выражений в аналитической (символьной) форме.
появился калькулятор Casio FX-82ES с технологией Natural Display, позволяющий вводить выражения в естественном виде так, как они выглядят на бумаге. Например, вводить обыкновенные дроби, квадратные корни, экспоненты и логарифмы в виде, принятом в учебниках. В результате сокращается количество ошибок в вычислениях, время вычислений и повышается заинтересованность учеников.
Модель калькулятора Casio fx-CG20 PRIZM явилась развитием первой модели, выпущенной в 2010 году. В отличие от предшественников она имела полноцветный экран высокого разрешения. Модель, несмотря на экран с подсветкой, не потеряла в энергоэффективности и способна месяцами работать на одном комплекте батарей.
Сейчас калькуляторы не только стали компактными и лёгкими, но и освоили массу функций, которые могут быть полезны всем, кому требуются точные и сложные расчёты. Сейчас существуют научные калькуляторы, которым под силу производить вычисления с дробями, считать векторы и матрицы, совершать метрические преобразования и решать уравнения, графические калькуляторы, позволяющие создавать таблицы и строить графики по картинке, а также финансовые калькуляторы, которые справляются с расчётом облигаций и другими нуждами финансиста.
На сегодняшний день флагманская графическая модель — калькулятор Casio FX-CG50 с цветным экраном высокого разрешения, возможностью строить 3D графики, режимом программирования, а также поддержкой векторных и матричных вычислений.
Casio 001. 1965 г.
Casio Mini. 1972 г.
Дисплей калькулятора Casio fX-7000G. 1985 г.
Casio FX-CG50
Так счётное устройство прошло эволюцию от доски с костяшками до маленького мощного компьютера, сохранив, тем не менее, главное свойство — способность облегчать жизнь человеку, освобождая его разум для стратегических решений.
ЭВМ: ЧТО? ГДЕ? КОГДА? | Суммирующая машина Паскаля
Паскалина (суммирующая машина Паскаля) — механическая счётная машина, изобретённая гениальный французским учёным Блезом Паскалем (1623—1662) в 1642 году.
Паскаль стал первым изобретателем механических счётных машин. Блез начал работу над машиной в возрасте 19 лет, наблюдая за работой своего отца, который был сборщиком налогов и часто выполнял долгие и утомительные расчёты.
Для своего времени Паскалина имела, конечно, довольно футуристический вид: механический «ящичек» с кучей шестерёнок. За десять лет Паскалю удалось собрать более 50 различных вариантов устройства. Складываемые числа вводились в машину при помощи поворотов наборных колёсиков, на каждое из которых были нанесены деления от 0 до 9, т.к. одно колёсико соответствовало одному десятичному разряду числа. Тем самым, чтобы ввести число, колесики прокручивались до соответствующей цифры. При совершении полного оборота, избыток над цифрой 9 колёсико переносило на соседний разряд, сдвигая рядом расположенное колесо на 1 позицию.
Первые экземпляры машины Паскаля имели пять зубчатых колёс, спустя время их число увеличилось до шести, а ещё чуть позже до восьми, что позволяло работать с многоразрядными числами, вплоть до 9 999 999. Ответ арифметических операций был виден в верхней части металлического корпуса устройства. Вращение колёс было возможно только в одном направлении, тем самым, исключая возможность работать с отрицательными числами. Примечательно, что машина Паскаля умела выполнять как сложение, так и другие операции, однако требовала при этом применения довольно неудобной процедуры повторных сложений. Вычитание выполнялось дополнениями до девятки, которые в качестве помощи считавшему появлялись в окошке, расположенном над выставленным оригинальным значением.
Преимущества автоматических вычислений никак не изменили ситуацию, т.к. использование десятичной машины для финансовых расчётов в рамках действовавшей во Франции до 1799 года денежной системы было занятием не из простых. Расчёты проводились в ливрах, су и денье. В «ливре» насчитывалось 20 «су», в то время как в «су» — 12 «денье». Похожая система была и в Великобритании. В результате использование десятичной системы счисления в недесятичных финансовых расчётах усложняло и без того трудный процесс вычислений.
Несмотря на вызываемый Паскалиной огромный восторг, машина не озолотила своего создателя. Техническая сложность и высокая стоимость машины в сочетании с небольшими даже для тех лет вычислительными способностями служили серьёзным барьером для её широкого распространения. И всё же, Машина Паскаля заслуженно вошла в историю, ведь заложенный в её основу принцип связанных колёс почти на 300 лет стал основой для большинства создаваемых вычислительных машин.
ЭВМ: ЧТО? ГДЕ? КОГДА? | Суммирующая машина Паскаля
Первая механическая счетная машина появилась в 1642
Задолго до появления первых счетных устройств люди искали различные возможности для проведения вычислений. Они использовали пальцы рук, камни, которые складывали в кучки или располагали в ряд. Число предметов фиксировалось с помощью черточек, которые рисовались на земле, зарубки, которые делались на палках, и узелков, которые завязывались на веревках. С увеличением объема вычислений начался поиск способа выполнять их с помощью какого-нибудь инструмента. Самым древним и хорошо известным счетным инструментом являются — счеты. Счеты — это периферийное устройство, состоящее из деревянных кружочков, нанизанных на деревянный или металлический стержень. Такое устройство позволяло быстро и точно производить простые арифметические действия над большими числами, такие как сложение, умножение, вычитание и деление.
До сих пор никто не может точно назвать время появления счетов. Историки сходятся во мнении, что их возраст составляет 2000-5000 лет, а их родиной может быть древний Китай, и древний Египет, и древняя Греция.
Первые счетные машины
В 1642 году девятнадцатилетний французский математик Блез Паскаль сконструировал первую в мире механическую счетную машину, известную как суммирующая машина Паскаля(«Паскалина»). Эта машина представляет собой комбинацию взаимосвязанных колесиков и приводов. На колесах были были нанесены цифры от 0 до 9. Когда первое колесо давало полный оборот от 0 до 9, в действие автоматически приводилось второе колесо. Когда и оно достигало цифры 9, начинало вращаться третье и так далее. Машина Паскаля могла только складывать и вычитать.
Потребовалось свыше 50 лет для создания более совершенного устройства, чем суммирующая машина Паскаля. Отсутствие инструмента, позволяющего быстро и точно осуществлять сложные и громоздкие вычисления привело к тому, что многие поставленные эксперименты так никогда и небыли завершены, а те которые все-таки удалось завершить потребовали месяцы и даже годы работы.
Такое положение сохранялось до 1694 года, когда немецкий математик Готфрид Вильгельм фон-Лейбниц сконструировал свою счетную машину. Основная цель, которую поставил перед собой Лейбниц, заключалась в том, чтобы создать такую счетную машину,которая полностью освободила бы ученых от рутинной работы — и тем самым позволила бы им заниматься чисто научными вопросами, а не математическими вычислениями. Кроме того, Лейбниц был уверен, что подобная машина найдет применение не только в науке, но и в различных сферах жизни.
В отличие от Паскаля Лейбниц использовал в своей машине цилиндры, а не колесики и приводы. На цилиндры были нанесены цифры. Каждый цилиндр имел девять выступов или зубцов. При этом первый ряд содержал один выступ, второй ряд два выступа и так до девятого ряда, который содержал соответственно девять выступов. Цилиндры с выступами были подвижными и приводились в определенные положения оператором. Будучи более сложной машина Лейбница была способна выполнить не только сложение и вычитание, но и умножение, деление и извлечение квадратного корня.
Вычислительные машины 19-го века
Следующий важный этап развития вычислительной техники приходится на 19-й век. Это был век выдающихся изобретений. Чтобы создать новое поколение счетных машин, причем таких машин которые решали бы задачи быстрее и проще, чем это делают люди.
Один из выдающихся ученых того времени был англичанин Чарльз Бебидж. Многие именно его считают отцом современного компьютера. Как и Паскаль и Лейбниц, Бэбидж был математиком. Однако в отличие от них он больше преуспел в разработке вычислительных машин, чем в реализации своих проектов. Бебиджу принадлежит изобретение первой программируемой вычислительной машины (1830 год). Этой идее он посвятил большую часть своей жизни. К сожалению он так и не довел до конца создание работающей модели.
Свое изобретение Бебидж назвал «Аналитической машиной». Согласно проекту машина должна была приводиться в действие силой пара. При этом она могла воспринимать команды, выполнять вычисления и выдавать необходимые результаты в отпечатанном виде.
Программы в свою очередь должны были кодироваться и переноситься на перфокарты. Идею использования перфокарт Бэбидж позаимствовал у французского изобретателя Жозефа Жаккара. Дело в том, что для контроля ткацких операций Жаккар применял отверстия, пробитые в карточках. Карточки с разным расположением отверстий давали различные узоры на плетении ткани. Жаккар даже не мог предположить, что его идея будет в последствии использована для обработки информации с помощью компьютеров. По сути дела Бебидж был первым, кто использовал перфокарты применительно к вычислительной машине.
В те времена технологии были хуже развиты чем аналитические средства. Бэбидж был не в состоянии сделать и собрать многие высокоточные детали, которые требовались для его машины. Тем не менее его изобретение сыграло важное значение: многие последующие изобретатели использовали идеи придуманных им устройств.
Среди ученых, которые отчетливо понимали важность аналитических методов, была математик Ада Августа Лавлейс — дочь английского поэта лорда Байрона. Именно она убедила Бэбиджа в необходимости использовать в его изобретении двоичной системы счисления вместо десятичной. Она так же разработала принципы программирования, предусматривающие повторение одной и той же последовательности команд и выполнение этих команд при определенных условиях. Эти принципы используются и в современной вычислительной технике.
Обработка данных с использованием перфокарт
Если Чарльз Бебидж был первым, кому пришла идея использовать перфокарты применительно к вычислительной машине, то первым, кто практически реализовал эту идею, был Герман Холлерит. Его машина была предназначена для обработки результатов переписи населения.
Каждые 10 лет правительство США проводит перепись населения. Сейчас подобная операция занимает считанные месяцы. Но в 19-м веке это был длительный и изнурительный процесс: не смотря на то что в 1880 году население США составляло всего лишь пятую часть современной численности населения, результаты переписи обрабатывались в течении целых восьми лет. Правительство страны, едва закончив обработку данных одной переписи, было вынуждено почти сразу же приступать к новой переписи.
Потребность в средствах для более быстрой обработки данных была очевидной. Вы только подумайте, что бы узнать, какова численность населения в 1890 году, надо было ждать наступления 1900 года.И вот тут на помощь американскому бюро переписи населения пришел Холлерит, который предложил для обработки данных использовать его машину. С помощью счетно аналитической машины Холлерита данные переписи 1890 года были обработаны менее чем за три года. При этом был получен характерный и впечатляющий результат: по сравнению с предыдущей переписью численность населения страны возросла на 25%.
Холерит не только реализовал идею Бэбиджа относительно перфокарт, но и в первые применил для расчетов электричество. Карты использовались для кодирования данных переписи, причем на каждого человека была заведена своя карта. Кодирование велось путем определенного расположения отверстий, пробитых в карте, по строкам и колонкам. Например, отверстие пробитое в третей колонке и четвертой строке, могло означать, что человек состоит в браке. Аналогичным образом другие отверстия могли означать пол, число членов семьи, образование и тд. Все эти данные потом «прочитывались» машиной. Когда карта, имевшая размеры банкноты в один доллар, пропускалась через машину, она прощупывалась системой игл. Если на против иглы оказывалось отверстие, то игла пройдя сквозь него, касалась металлической поверхности, расположенной под картой. Возникавший таким образом контакт замыкал электрическую цепь, благодаря чему к результатам расчетов автоматически добавлялась единица.
Метод перфокарт Холлерита явился значительным этапом в создании быстро и точно считающих машин(код используемый для записи данных на этих перфокартах получил название кода Холлерита). Только спустя 70 лет перфокарты начали заменять магнитными лентами и дисками.
Первые ЭВМ
Первые электронные компьютеры появились в первой половине 20 века. Они могли делать значительно больше механических калькуляторов, которые лишь складывали, вычитали и умножали. Это были уже электронные машины, способные решать сложные задачи. Кроме того они имели две отличительные особенности, которыми предыдущие машины не обладали. Одна из них состояла в том, что они могли выполнять определенную последовательность операций по заранее заданной программе или последовательно решать задачи разных типов. Другая особенность заключалась в способности хранить информацию в специальной памяти.
Дифференциальный анализатор
Первая счетная машина, которая появилась на пути создания электронных машин, была разработана американским ученым Ванневером Бушем в 1930 году. (По этой причине некоторые считают, что Буш является отцом современного компьютера, а не Бебидж.) Машина Буша была названа дифференциальным анализатором. Это был первый в мире компьютер. (Принцип действия аналогового компьютера основан на измерении непрерывных изменений физических величин, например атмосферного давления или температуры воздуха.)
Машина Буша оказалась способной быстро решать сложные математические задачи. Она приводилась в действие электричеством, для хранения информации в ней использовались электрические лампы, подобные тем, что использовались в те времена в радиоприемниках. Дифференциальный анализатор имел много составных частей, что фактически занимал целую комнату. Даже более поздняя модель такого анализатора, построенная в 1942 году, весила 200 тонн.
Машина Марк I
Необходимость в быстрых и точных расчетах особенно выросла во время второй мировой войны(1939 — 1945 гг.). Прежде всего для решения задач в области баллистики, т.е. науки о траектории полета артиллерийских и иных снарядов к цели.
Чтобы повысить прицельность стрельбы, в артиллерии применяют так называемые таблицы ведения огня. Они позволяют артиллеристам определять, каким образом надо вести стрельбу в различных условиях. Естественно, что подготовка подобных таблиц требует проведения очень сложной работы. Даже если более 100 человек в армии занимаются только расчетами таких таблиц, на составление одной такой таблицы потребуется не менее двух месяцев. Для таких расчетов требовались машины с большим быстродействием и более высокой точностью расчетов.
Одной из таких машин стал автоматический последовательно управляемый калькулятор, известный под названием Марк I. Он был изготовлен в 1944 году профессором Гарвардского Университета Айкеном.
Марк I — первый в мире цифровой компьютер.(Принцип действия цифровых компьютеров основан на счете чисел, только через определенные промежутки времени.)
Работая над машиной Марк I, Айкен совместил технические возможности и зания 20-го века с методом перфокарт Холлерита. В результате появилась автоматическая вычислительная машина, которая была способна воспринимать входные данные, закодированные с помощью перфокарт или перфолент. Машина Марк I не была полностью электронной. Она была электромеханической. Это означает, что в ней использовались электронные сигналы в комбинации с механическими приводами, колесиками и переключателями.
Машина Айкена имела громадные размеры более: 15 м в длину и около 2,5 м в высоту и состояла более чем из 750 тыс. деталей.
Машина Марк I могла перемножить два 23-разрядных числа за четыре секунды и за один день выполняла расчет, которые вручную могли быть выполнены только за 6 месяцев. У неё был самый большой объем памяти среди машин того времени и значительно улучшенные программные возможности. И тем не менее уже через несколько лет она практически перестала использоваться.
Эниак
В то самое время, когда Говард Айкен создавал Марк I, профессор университета штата Айова физик Джон Атанасофф также работал над созданием более совершенной машины. Правда, она не получила столь же широкой известности, но многие из использованных в этой машине конструкторских идей были затем применены в первом полностью электронном цифровом компьютере, получившем название ENIAC (Electronic Nimerical Integrator and Calculator — Электронный численный интегратор и калькулятор).
Эниак был создан в 1946 году группой инженеров под руководством Джона Маушли и Дж. Преспера Эккерта по заказу военного ведомства США. Машина производила 5 000 операций сложения или 300 операций умножения в секунду. Она выполняла их в несколько сотен раз быстрее, чем любая из существующих в то время машин, и могла в считанные часы решить задачи, на которые пятидесяти инженерам потребовался бы год.
По габаритам Эниак был еще более громадным, чем Марк I: более 30 м в длину и 85 м 3 по занимаемому объему. Её вес равнялся весу четырех африканских слонов — 30 т. Вместо тысяч механических деталей, которыми был набит Марк I, в Эниаке были использованы 18 тыс. электронных ламп. Таким образом, компьютер осуществлял хранение и обработку данных с помощью электроники, а не механически.
Эксплуатация Эниака была значительно сложнее. Команды по программе вводились вручную; после введения программы порядок выполнения команд мог быть измене только после выполнения всей программы. Каждая новая программа требовала новой комбинации сигналов. В результате на создание и выполнение даже самой простой программы требовалось очень много времени.
Электронные лампы Эниака составляли самостоятельную проблему. Они не только занимали большой объем, но и выделяли большое количество тепла. А это требовало специальной системы охлаждения. Но еще больше важно то, что в 40-е годы электронные лампы не были такими же надежными компонентами электронных приборов, какими они являются в настоящее время. Нередко 6 или 7 ламп выходили из строя в течении одного часа. И все таки Эниак продемонстрировал всем широкие возможности электронного компьютера.
ЭВМ с хранимой программой
Существенный вклад в создание ЭВМ в нем американский математик Джон фон Нейман, принимавший участие в создании Эниака. Фон Нейман предложил идею хранения программы в памяти машины: ЭВМ с хранимой программой оказались значительным шагом вперед по пути создания более совершенных машин. Такую ЭВМ нет необходимости обеспечивать новой совокупностью управляющих сигналов для решения каждой новой задачи. Кроме того, она способна обрабатывать команды в различном порядке. Первая ЭВМ с хранимой программой получила название EDSAC (Electronic Delay Storage Automatic Calculator — электронный калькулятор с памятью на линиях задержки). Она была создана в Кембриджском университете в 1949 году. С тех пор все ЭВМ являются компьютерами с хранимой программой.
После завершения работ над Эниаком Джон Маушли и Дж. Преспер Эккерт основали собственную компанию, которая приступила к разработке компьютеров с хранимой программой. В 1951 году они создали машину UNIVAC (Universal Automatic Computer — универсальная автоматическая вычислительная машина). Первый экземпляр Юнивака был передан в Бюро переписи населения США. Затем было создано много разных моделей Юнивака, которые нашли применение в различных сферах деятельности. Таким образом, Юнивак стал первым серийным компьютером. Кроме того, это был первый компьютер, в котором вместо перфолент и карт использовалась магнитная лента.
Источник: «Основы компьютерной грамотности» 1989 г. Б. Кёршан, А.Новембер,Дж Стоун