Пластические смазки для автомобилей
Пластичные смазки: свойства и классификация
К категории смазочных материалов относятся моторные и трансмиссионные масла, различные жидкости на основе нефтепродуктов и пластичные смазки.
Смазочные материалы — это неотъемлемый компонент практически любого механизма. Помимо основной функции смазки поверхностей деталей, подверженных трению, они выполняют множество других функций, в том числе герметизации, антикоррозийной защиты, охлаждения, защиты от ударной нагрузки.
Состав
Если машинные масла — это двухкомпонентный состав на основе минерального или синтетического базового масла с добавлением пакета присадок, то пластичные смазки есть не что иное, как трехкомпонентный состав, состоящий из базового масла, пакета присадок и самого главного компонента — загустителя, который формирует пластичную структуру.
Производство
Пластичные смазки изготавливаются из 3 компонентов — базового масла, присадок и загустителя. В качестве базового масла применяются синтетические или минеральные с различной вязкости.
В качестве присадок используют стандартные присадки и модификаторы трения:
В качестве загустителя используется два вида компонентов:
Степень густоты загустителя регулируется добавлением модификатора структуры — специального компонента, позволяющего делать загуститель более густым или более жидким. Все основные свойства смазки — степень адгезии, температурная стойкость, стойкость к вымыванию водой, механическая стабильность, определяются именно свойствами загустителя. Не важно, какое базовое масло использовано в смазке, важно на основе какого загустителя она изготовлена. Именно этот показатель определяет применение той или иной смазки.
Свойства
Основная функция пластичной смазки, хоть далеко и не единственная, заключается в снижении трения между поверхностями деталей, соприкасающихся между собой в процессе работы механизма. В этом смысле пластичная смазка похожа на масло.
Однако у пластичной смазки есть одна особенность — это принцип ее работы, основанный на свойствах загустителя впитывать базовое масло в состоянии покоя, и выделять его из своей структуры при механическом воздействии.
Принцип работы пластичной смазки напрямую зависит от того, какой загуститель применялся производителем при производстве той или иной пластичной смазки.
Когда пластичная смазка закладывается в узел трения, например в подшипник, на направляющую или какую-либо другую поверхность, то смазывает не сама пластичная смазка, а смазывает базовой масло, которое выступает из ее структуры. При работе узла, в который нанесена пластичная смазка, внутри него возникает механические нагрузки. Например, внутри подшипника при его вращении ролики или шарики прокатываются по телам качения, соответственно, смазка подвергается механическому воздействию.
Как следствие, загуститель расширяется и из его пор выделяется базовое масло, которое непосредственно смазывает поверхность. Как только подшипник перестает вращаться, загуститель снова впитывает в себя базовое масло.
Принцип действия загустителя похож на принцип действия губки, при надавливании на которую из ее структуры выступает вода, а если ее отпустить, то она снова впитает воду.
Применение
Пластичные смазки многофункциональны, однако можно выделить 5 основных:
К преимуществам можно отнести характеристики:
Виды пластичных смазок
От содержащихся компонентов, разделяются на несколько типов:
Пластичные смазки, в силу своих особенностей, применяются там, где применение обычных масел невозможно.
Отличаясь простотой, они выполняют множество функций, недоступных для обычных смазочных масел. Данный тип смазочных материалов можно по праву отнести к универсальным.
Смазки пластичные: характеристики, применение, свойства
Смазки пластичные – особый тип смазочных материалов, который используется для обслуживания различных видов техники и обеспечивает стабильную работу и долговечность механизмов. Их также называют консистентной, из-за соответствующих физических свойств. Они изготавливаются из базового жидкого масла и загустителя. Такая комбинация обеспечивает пластичную структуру во время работы, что не позволяет смазке растекаться в разные стороны.
Состав пластичных смазок
Состав пластических смазок обычно выглядит следующим образом:
Масляная основа обычно составляет около 80%, так как даже 10% загустителя может быть достаточно для достижения необходимой консистенции и физических свойств.
В качестве присадок обычно используются такие материалы как медь, тальк, слюда и графит.
Характеристики и применение
Характеристики смазок отличаются разнообразием, основываясь на которых можно определить, для каких целей и механизмов можно ее использовать.
Эксплуатационные свойства пластичных смазок характеризуются следующими показателями:
Чаще всего этот продукт применяется в различных узлах автомобилей. Практически 50% производимых в мире смазок предназначены именно для обслуживания автомобилей. Большое распространение они получили также в промышленности, где требуется стабильная работа станков и конвейеров. Также стоит отметить горную промышленности и сельское хозяйство, где множество тракторов, экскаваторов и других механизмов невозможно обслуживать без консистентной смазки.
Классификация пластичных смазок
Классификация пластичных смазок основывается на типе загустителя и присадок, которые используются в процессе изготовления.
Универсальных смазок, в понимании этого слова, не существует. Да в некоторых схожих сферах, можно использовать один и тот же состав, но его лучше подбирать в каждом отдельном случае. Различные марки пластических смазок имеют подробные инструкции, указывающие как, в каких условиях и механизмах можно их использовать.
Технология производства
Пластичные смазочные материалы отличаются технологией производства, в зависимости от типа используемой присадки. Независимо от типа производство должно строго соответствовать технологическим нормам и ГОСТу. Очень часто используется стандарт DIN 51502, разработанный немецкими технологами.
Производство состоит из тщательного смешивания компонентов при определенных температурах.
Соблюдение температурного режима очень важно, так малейшее отклонение может привести к расслоению смеси. Смешивание выполняется в специальном оборудовании, типа миксеров.
Процесс охлаждения смеси не менее важен, так как именно он влияет на получение нужной текстуры. Он происходит в специальных холодильных установках. Именно в процессе охлаждения в смесь добавляются присадки.
Следующий этап изготовления – гомогенизация. Она заключается в пропуске охлажденной смазки через вальцовые краскотерки, что позволяет довершить образование необходимой структуры. После этого может быть проведен процесс деаэрации, в результате чего из смеси удаляется воздух.
Последним этапом является фильтрация, которую выполняют с помощью фильтров разной конструкции и степени очистки. От качества фильтрации напрямую зависит степень антифрикционных свойств продукта.
Преимущества и недостатки
Пластичные смазки, используемые для автомобилей, имеют ряд преимуществ и недостатков. Среди преимуществ можно выделить:
Недостатков существенно меньше. К ним можно отнести меньшие, в сравнение с жидкими, показатели теплопередачи. Поэтому использование их при высоких рабочих температурах узлов ограничено. Также ограничено использование для высокоскоростных механизмов, обслуживание которых лучше проводить с помощью жидких составов.
Автомобильные пластичные смазки: назначение, состав и получение пластичных смазок
Назначение, состав и получение пластичных смазок
Пластичные смазки предназначены для применения в узлах трения, где масло не удерживается или невозможно обеспечить непрерывное пополнение его запаса.
Пластичные (консистентные) смазки — особый класс смазочных материалов, которые получают загущением смазочных масел (дисперсионная среда) твердыми веществами (дисперсионная фаза). В этой системе твердая фаза (загуститель) образует структурный каркас, который удерживает в своих ячейках жидкую дисперсионную среду. В качестве такого структурного каркаса используются жирные соли мягких металлов.
Но могут применяться и мыло, парафин или пигмент. Название металла, как правило, переносят на саму смазку — натриевая, кальциевая, литиевая, бариевая, магниевая, цинковая, стронциевая и т. д.
Если на долю дисперсионной среды (масло) приходится основная масса (70—95 %), то дисперсионная фаза (загуститель) составляет 5—30 %.
При заданных условиях такая смазка находится в пластичном мазеобразном состоянии. При достижении определенной температуры предела пластичная смазка плавится и расслаивается.
Пластичные смазки не стекают с наклонных и вертикальных поверхностей и удерживаются в узлах трения при действии высоких нагрузок и инерционных сил.
Пластичные смазки нашли широкое применение в качестве защитных, герметизирующих, антифрикционных и противоизносных материалов.
На долю дисперсной среды в пластичных смазках приходится 70—95 % массы, как правило, это минеральные масла. Для получения большего интервала рабочих температур используют такие синтетические жидкости, как силиконы и диэфиры.
Кроме дисперсионной среды и загустителя смазки могут содержать стабилизаторы и модификаторы коллоидной структуры, присадки и наполнители для придания или улучшения функциональных свойств, а также красители. Действие смазки гораздо сложнее, чем масла. Поэтому для грамотного выбора того или иного состава необходимо знать его свойства.
Эксплуатационные свойства пластичных смазок. Температура каплепадения
В пластичной смазке при нагревании происходит необратимый процесс разрушения кристаллического каркаса, и смазка становится текучей. Переход из пластичного состояния в жидкое условно выражают температурой каплепадения, т. е. температурой, при которой из стандартного прибора при нагревании падает первая капля смазки. Температура каплепадения смазок зависит от вида загустителя и его концентрации.
По температуре каплепадения смазки делят на тугоплавкие (Т), среднеплавкие (С) и низкоплавкие (Н). Тугоплавкие смазки имеют температуру каплепадения выше 100 °С; низкоплавкие — до 65 °С. Во избежание вытекания смазки из узла трения температура каплепадения должна превышать температуру рабочего узла на 15—20 °С.
Механические свойства
Механические свойства смазок характеризуются пределом прочности смазок при сдвиге и пенетрацией.
Предел прочности — это минимальное удельное напряжение, которое нужно приложить к смазке, чтобы изменить ее форму и сдвинуть один слой смазки относительно другого. При меньших нагрузках пластичные смазки сохраняют свою внутреннюю структуру и упруго деформируются подобно твердым телам, а при больших давлениях структура разрушается, и смазка ведет себя как вязкая жидкость.
Предел прочности зависит от температуры смазки — с повышением температуры он уменьшается. Этот показатель характеризует способность смазки удерживаться в узлах трения, противостоять сбросу под влиянием инерционных сил. Для рабочих температур предел прочности не должен быть ниже 300—500 Па.
Пенетрация — условный показатель механических свойств смазок, численно равный глубине погружения в них конуса стандартного прибора за 5 с. Пенетрация — показатель условный, не имеющий физического смысла, и не определяет поведение смазок в эксплуатации.
В то же время, так как этот показатель быстро определяется, им пользуются в производственных условиях для оценки идентичности рецептуры и соблюдения технологии изготовления смазок.
Число пенетрации характеризует густоту смазок и колеблется от 170 до 420.
Эффективная вязкость
Вязкость смазки при одной и той же температуре может иметь различное значение, которое зависит от скорости перемещения слоев относительно друг друга. С увеличением скорости перемещения вязкость уменьшается, так как частицы загустителя ориентируются по ходу движения и оказывают меньшее сопротивление скольжению. Увеличение концентрации и степени дисперсности загустителя приводят к увеличению вязкости смазки. Вязкость смазки зависит от вязкости дисперсной среды и технологии приготовления смазки.
Вязкость смазки при определенной температуре и скорости перемещения называется эффективной вязкостью и рассчитывается по формуле
ηэф = τ/D
где т — напряжение сдвига; D — градиент скорости сдвига.
Показатель вязкости имеет большое практическое значение. Он определяет возможность подачи смазок и заправки в узлы трения с помощью различных заправочных устройств. Вязкость смазки определяет также расход энергии на ее перекачку при перемещении смазанных деталей.
Коллоидная стабильность
Коллоидная стабильность — это способность смазки сопротивляться расслаиванию.
Коллоидная стабильность зависит от структурного каркаса смазки, который характеризуется размерами, формой и прочностью связей структурных элементов. Следовательно, на коллоидную стабильность оказывает влияние вязкость дисперсной среды: чем выше вязкость масла, тем труднее ему вытекать.
Выделение масла из смазки увеличивается с повышением температуры, увеличением давления под действием центробежных сил.
Сильное выделение масла недопустимо, так как смазка может ухудшить или потерять полностью свои смазочные свойства. Для оценки коллоидной стабильности используют различные приборы, способные выпрессовывать масло под действием нагрузки.
Водостойкость
Водостойкость — это способность смазки противостоять размыву водой. Растворимость смазки в воде зависит от природы загустителя. Наилучшей водостойкостью обладают парафиновые, кальциевые и литиевые смазки. Натриевые и калиевые — водорастворимые смазки.
Классификация, применение и обозначения пластичных смазок
Пластичные смазки подразделяются на четыре группы:
— антифрикционные — для снижения износа и трения скольжения сопрягаемых деталей;
— консервационные — для предотвращения коррозии при хранении, транспортировке и эксплуатации;
— канатные — для предотвращения коррозии и износа стальных канатов;
— уплотнительные — для герметизации зазоров, облегчения сборки и разборки арматуры, манжет, резьбовых, разъемных и любых подвижных соединений.
Автомасла и все, что нужно знать о моторных маслах
Пластичные смазки: применение
Пластичные смазки: производство, применение, свойства
Пластичные смазки по своим свойствам объединяются в отдельную категорию пастообразных вязких материалов. Смеси обладают уникальной способностью сохраняться длительное время на поверхностях трущихся деталей, где традиционные жидкие составы не смогли бы удержаться.
Состав масел
Пластическая масляная смесь представляет собой трехкомпонентную коллоидную систему, состоящую из основы (дисперсной среды), загустителей (дисперсной фазы) и модифицирующих слаборастворимых добавок (наполнителей). Сгустители формируют в масляной жидкости волокнистую структуру, которая создает внутри вещества пространственную кристаллическую решетку, удерживающую жидкое масло. В момент возникновения, между соприкасающимися поверхностями, сил трения, жидкая составляющая самовыделяется и смазывает зону контакта.
В составе пластичной смазки каждый компонент имеет свое специфическое назначение:
В зависимости от способа производства и эксплуатационных требований пастообразные масляные вещества принято систематизировать по нескольким параметрам:
По своему назначению масла делятся:
Базовые масла
Пластичные системы на 70–96% состоят из жидкой дисперсионной среды. Это базовая составляющая всех пастообразных смазочных материалов. Эксплуатационные качества готовых смесей в полной мере повторяют свойства основы, ее химический состав, вязкостные и термические характеристики, а также кардинально влияют на параметры готового продукта.
Минеральные базовые составляющие – это продукты получаемые в процессе переработки нефти, отличаются высокой вязкостью, окислительной и механической стабильностью. Мази, изготовленные на базе минеральных нефтепродуктов, хорошо защищают металлические покрытия от воздействия влаги, химических веществ и коррозии. Эксплуатационные свойства готового продукта пропорциональны качеству исходного сырья, которое зависит от способа перегонки нефти и глубины фильтрации.
Материалы на минеральной основе используются для смазывания высоконагруженных модулей трансмиссии автомобиля:
Синтетическая основа – это масляные жидкости, синтезируемые из низкомолекулярных веществ – полимеров или олигомеров. Технические характеристики синтетических смазок во много раз превышают эксплуатационные качества минеральных масел. Составы отличаются повышенной вязкостью, температурой твердения, высокими термическими и механическими свойствами.
Эфирные (диэфирные) композиции – маслянистые бесцветные жидкости, не вступающие в реакцию с водой. Смазочные материалы на основе эфирных веществ обладают высокой смазочной способностью, и предназначены для высокоскоростных узлов трансмиссии, где требуется повышенная химическая устойчивость к различным нефтепродуктам.
Силиконовая основа пластичных смазок – это кремнийорганические масляные жидкости с высокими гидрофобными и адгезионными свойствами, химически инертны, не токсичны. Вещества обладают большим углом смачивания и широким диапазоном рабочих температур.
Масла растительного происхождения производятся посредством переработки семян некоторых масленичных культур. Органические композиты обладают хорошей адгезией, но сравнительно низкими термическими характеристиками.
Загустители
Пластичные мылистые реактивы, служащие для увеличения вязкости масел, называются загустителями. В роли загустителей (добавок) по большей части выступают жирные органические кислоты и продукты омыления металлов.
Волокнистая структура добавки определяет густоту и механическую прочность покрытия, а кристаллическая решетка, формируемая волокнами, обуславливает химическую и термическую устойчивость материала. Количество сгущающих присадок в структуре вещества составляет 4–20%.
В роли модификаторов вязкости выступают производные калия, натрия, алюминия, лития, бария. Кроме этого применяют полимерные, углеводородные, силикагелевые и эфирные загустители. При маркировке смазочного материала обязательно указывается тип мыльной добавки.
Металлические мыла
Мыльные комплексные системы классифицируют по нескольким категориям:
Структура простых субстанций состоит из синтетического (60%) или натурального (80%) сырья. Примерами таких соединений могут служить смазочные растворы на базе солей лития, кальция, натрия, алюминия, бария.
Соли кальция и смазочные материалы, изготовленные на базе этих веществ, обладают высокой гидрофобностью, адгезией, низкотемпературными, противокоррозионными и антиокислительными качествами. Недостатками этих масел является низкое значение жаростойкости (+75°). В процессе работы они могут разжижаться, а в случае длительного хранения – затвердевать. На практике такие смазки называют солидолами:
Пластические кальциевые масла применяют для обработки трущихся поверхностей автомобиля, где нет высокого механического и химического воздействия.
Литиевые мыла обладают широким диапазоном эксплуатационных характеристик. Смазочные материалы, изготовленные на базе литиевых производных, используют для покрытия трущихся деталей в крайне нагруженных местах трансмиссии и шасси автомобиля.
Натриевые смазки обладают высокой адгезией по отношению к металлическим поверхностям. Высокие термические характеристики натриевого мыла позволяют пластичным смазкам на их основе сохранять свою работоспособность до +120°. Недостатком масел является то, что они хорошо растворяются в воде. Этот фактор в значительной степени ограничивает их сферу использования.
Алюминиевые растворы характеризуются высокой водонепроницаемостью, адгезией, температурный интервал – от +5 до +110°C. Из недостатков – невысокая стойкость к механическим нагрузкам. Бариевые мыла и материалы отличаются повышенными физико-химическими характеристиками, термостойкостью (+150°C) и совершенно инертны к нефтехимическим веществам.
Смешанные композиции вырабатывают посредством соединения 2–3 элементов (Ca–Na; Li–Na–Ca). Производство композитов имеет свои особенности. Вначале в структуру загустителей вводят базовые вещества, которые начинают взаимодействовать с органическими кислотами, и только после окончания реакции окисления, вводят следующий реагент.
Характеристики таких смазок обуславливаются объемом применяемых компонентов. Например, чем больше кальциевого мыла в составе натриевой смазки, тем выше водонепроницаемость и термическая стойкость. Добавки кальциевых компонентов в структуру лития позволяют получить более прочные соединения с хорошей водостойкостью.
Комплексные загустители получают путем смешивания нескольких типов солей, принадлежащих одному химическому элементу. В качестве таких реагентов обычно выступают соли щелочных металлов (стеараты), органических или неорганических кислот – ацетаты и карбонаты.
Химический состав комплексного раствора подбирают с учетом улучшения эксплуатационных характеристик готовой смазки. Среди большого количества комплексных соединений особенно широкое признание получили алюминиевые, литиевые, кальциевые и бариевые мыла.
Полимерные загустители
Для производства пластичных смазок на базе полимерных загустителей применяются восковые полимочевины и фторполимерные вещества. Полимочевинные соединения обладают высокими термическими характеристиками, их температура плавления находится в границах от +150 до 230°C.
Полимерные композиции отличаются длительным сроком эксплуатации, хорошей смазочной способностью, подходят для использования в узлах трения с высокими механическими нагрузками. Основное назначение – это смазывание шарниров и роликовых подшипников ходовой части автомобиля.
Составы на основе фторполимерных загустителей являются незаменимыми субстанциями при производстве высокотемпературных масел, отличаются гидрофобными, антикоррозионными и антиокислительными свойствами.
Углеводородные
Углеводородные мази получают посредством сгущения жидких минеральных масел парафинами и церезинами. Смазки имеют высокую водостойкость, химическую устойчивость, и способны сохранять свои эксплуатационные характеристики даже после расплавления и последующего остывания.
Из недостатков – это низкая термическая устойчивость (32–65°C). По этой причине масла разрешено применять только в консервационных целях. Не исключается возможность использования таких смазок для ходовой части автомобилей, эксплуатируемых в условиях низкого температурного режима.
Неорганические и органические компоненты
Смазочные материалы с неорганическими связующими веществами изготавливают с применением сажи, селикогеля, бетонита и др. Смеси химически стабильны, отличаются повышенными параметрами водо- и термостойкости.
Неорганические составляющие имеют пористую структуру, которая в процессе изготовления смазочных смесей впитывает масляную жидкость, которая в ходе переработки превращается в вязкий гель. Продукты, сделанные на силиконовых маслах и графите, отличаются водонепроницаемостью, высокой термической и химической устойчивостью.
В роли органических сгустителей задействуют соединения мочевины и фталоцианиновые производные. Смазочные материалы на базе органических загустителей имеют неплохие эксплуатационные характеристики и могут использоваться для смазывания трущихся поверхностей в ходовой части автомобиля.
Модификаторы
Пластичные смазки являются сложными по своей структуре материалами, их состав зависит от назначения и эксплуатационных требований. Некоторые марки смесей могут содержать десять и более компонентов. Помимо основы и загустителя в пастообразных системах содержится комплекс улучшающих добавок и наполнителей, которые в свою очередь тоже изменяют эксплуатационные свойства продукта.
Подбор модификаторов производится строго индивидуально, в зависимости от назначения готовой смазки. Например, добавка, увеличивающая липкость масла – важна для смазки рулевых тяг и совершенно неприемлема при обработке высокоскоростных подшипников.
Модифицирующая присадка во время приготовления может растворяться в смеси (функциональная добавка) или находится в растворе в форме твердых включений – взвесей (наполнитель).
Функциональные реагенты совершенствуют противоизносные, антифрикционные, противозадирные и антиокислительные свойства. Они повышают коллоидную и термическую устойчивость, адгезию, снижают риск коррозии и ржавления.
Перечисленные материалы добавляются в смеси в форме порошков. Их эффект действия заметен в зонах контакта интенсивно трущихся поверхностей. Наполнители отличаются высокой термостойкостью – 250–400°C. Они на постоянной основе предохраняют трущиеся детали от задиров и разрушений.
Основные свойства пластичных смазок
Свойства пластичных смазок несколько отличаются от свойств жидких трансмиссионных и моторных масел. Для жидких фракций характерны следующие качества:
Эксплуатационные требования к пастообразным смазкам нужно рассматривать гораздо шире. Технические характеристики жидких масел в основном направлены на снижение трения и износа, и эти свойства зависят от химической структуры основы и пакета модифицирующих присадок.
Свойства пластичных смазок и их назначение определяется маркой базового масла, его вязкостью, типом загустителя, способом смешивания, природой наполнителя, химическим составом присадок и их принципом действия.
Основные показатели качества, влияющие на эксплуатационные характеристики пластичных масляных смесей:
Совместимость смазок
В ходе эксплуатации автомобильного транспорта возникает необходимость замены одного типа смазки на ее аналоги. При выборе материала всегда нужно учитывать совместимость смазочных составов. Нанесение на металлическую поверхность масла, которое не совмещается по техническим характеристикам с предыдущим составом, может привести к поломке, и выходу из строя рабочего узла ходовой части автомобиля.
В случае невозможности приобретения нужного сорта смазки, необходимо снять деталь, промыть ее в керосине, и лишь затем наносить новую марку материала. Если демонтаж детали ходовой части автомобиля затруднен по техническим причинам, то нужно использовать только ту смазку, которую рекомендует завод изготовитель (инструкция по ТО).
Следующая проблема – это совместимость с полимерными комплектующими. Масла на минеральной основе хорошо воспринимают пластиковые детали, а вот синтетические материалы могут отрицательно повлиять на состояние пластмассовых элементов. При определении возможности совмещения контактируемых веществ, нужно учитывать продолжительность их взаимодействия и рабочую температуру узла трения.