Принцип работы холодильной машины простыми словами
Принцип работы холодильника кратко: как устроен
Содержание:
Производственные процессы, торговля и быт редко обходятся без установок для охлаждения. Даже посреди зимы поддерживать стабильную температуру продуктов питания без охладителя сложно. Кратко рассмотрим принцип работы (действия) холодильной машины – холодильника.
Как работает холодильник простыми словами
Принцип работы холодильника основан на испарении и выработке конденсата хладагента, зачастую – жидкого фреона. Охладитель поглощает вырабатываемую машиной тепловую энергию вследствие кипения холодильного агента. В его роли преимущественно выступает фреон.
Энергия у системы забирается (образуется холод), когда изменяется давление хладагента, приводящее к корректировке температуры его кипения. Для испарения жидкости её необходимо нагреть, конденсация наблюдается при отборе тепла из парообразной среды.
Холодильные машины в физике представлены четырьмя узлами:
Все компоненты соединены системой трубок, по которым циркулирует хладагент. Для «получения холода» температура кипения охладительной жидкости должна быть ниже, чем в окружающей среде.
Роль холодильника в тепловом двигателе
Работа тепловым двигателем совершается при разности давлений с обеих сторон поршня. Оно создаётся путём повышения температуры внутри агрегата на сотни градусов. Газ при этом совершает работу – расширяется, двигая поршень. Холодильник этот газ охлаждает, чтобы работа на сжатие была меньше, чем на декомпрессию.
Принцип работы холодильной машины основывается на охлаждении – отборе тепла у рабочей машины посредством кипения жидкости.
Принцип работы холодильной машины
Жидкий фреон, являющийся в настоящее время основным хладагентом холодильной машины, находящийся в открытом сосуде при нормальном атмосферном давлении, немедленно вскипает. При этом происходит интенсивное поглощение тепла из окружающей среды, сосуд покрывается инеем из-за конденсации и замораживания паров воды из окружающего воздуха. Процесс кипения жидкого фреона будет продолжаться до тех пор, пока весь фреон не перейдет в газообразное состояние, либо давление над жидким фреоном не возрастет до определенного уровня и при этом не прекратится процесс испарения его из жидкой фазы.
Для того, чтобы процесс кипения хладагента в испарителе происходил непрерывно, необходимо постоянно из испарителя удалять газообразный и «подливать» жидкий хладагент.
Процесс конденсации паров жидкости происходит при температуре, зависящей от давления окружающей среды. Чем выше давление, тем выше температура конденсации. Пары фреона R-22 конденсируются в жидкость при давлении 23 атмосферы уже при температуре +55°С. Процесс конденсации паров хладагента в жидкость сопровождается выделением в окружающую среду большого количества тепла. В холодильной машине конденсация паров хладагента происходит в специальном, герметичном теплообменнике, называемом конденсатором.
Для отвода выделяемого тепла используется алюминиевый теплообменник с оребренной поверхностью, называемый конденсатором. Для удаления паров хладагента из испарителя и создания необходимого для конденсации давления используется специальный насос — компрессор.
Элементом холодильной установки является также регулятор потока хладагента, так называемая дроссилирующая капиллярная трубка. Все элементы холодильной машины соединяются трубопроводом в последовательную цепь, обеспечивая тем самым замкнутую систему.
Устройство и принцип работы холодильной установки
Сегодня в охлаждении нуждается огромное количество продуктов, а еще без холода невозможно реализовать многие технологические процессы. То есть с необходимостью применения холодильных установок мы сталкиваемся в быту, в торговле, на производстве. Далеко не всегда удается использовать естественное охлаждение, ведь оно сможет понизить температуру лишь до параметров окружающего воздуха.
На выручку приходят холодильные установки. Их действие основано на реализации несложных физических процессов испарения и конденсации. К преимуществам машинного охлаждения относится поддержание в автоматическом порядке постоянных низких температур, оптимальных для определенного вида продукта. Также немаловажными являются незначительные удельные эксплуатационные, ремонтные затраты и расходы на своевременное техническое обслуживание.
Как работает холодильная машина
Для получения холода используется свойство холодильного агента корректировать собственную температуру кипения при изменении давления. Чтобы превратить жидкость в пар, к ней подводится определенное количество теплоты. Аналогично конденсация парообразной среды наблюдается при отборе тепла. На этих простых правилах и основывается принцип работы холодильной установки.
Это оборудование включает в себя четыре узла:
Между собой все эти узлы соединяются в замкнутый технологический цикл при помощи трубопроводной обвязки. По этому контуру подается холодильный агент. Это вещество, наделенное способностью кипеть при низких отрицательных температурах. Этот параметр зависит от давления парообразного хладагента в трубках испарителя. Более низкое давление соответствует низкой температуре кипения. Процесс парообразования будет сопровождаться отнятием тепла от той окружающей среды, в которую помещено теплообменное оборудование, что сопровождается ее охлаждением.
При кипении образуются пары хладагента. Они поступают на линию всасывания компрессора, сжимаются им и поступают в теплообменник-конденсатор. Степень сжатия зависит от температуры конденсации. В данном технологическом процессе наблюдается повышение температуры и давления рабочего продукта. Компрессором создают такие выходные параметры, при которых становится возможным переход пара в жидкую среду. Существуют специальные таблицы и диаграммы для определения давления, соответствующего определенной температуре. Это относится к процессу кипения и конденсации паров рабочей среды.
Конденсатор – это теплообменник, в котором горячие пары хладагента охлаждаются до температуры конденсации и переходят из пара в жидкость. Это происходит путем отбора от теплообменника тепла окружающим воздухом. Процесс реализуется при помощи естественной или же искусственной вентиляции. Второй вариант зачастую применяется в промышленных холодильных машинах.
После конденсатора жидкая рабочая среда поступает в терморегулирующий вентиль (дроссель). При его срабатывании давление и температура понижается рабочих параметров испарителя. Технологический процесс вновь идет по кругу. Чтобы получить холод необходимо подобрать температуру кипения хладагента, ниже параметров охлаждаемой среды.
На рисунке представлена схема простейшей установки, рассмотрев которую можно наглядно представить принцип работы холодильной машины. Из обозначений:
Стрелочками указано направление технологического процесса.
Помимо перечисленных основных узлов, холодильная машина оснащается приборами автоматики, фильтрами, осушителями и иными устройствами. Благодаря им установка максимально автоматизируется, обеспечивая эффективную работу с минимальным контролем со стороны человека.
В качестве холодильного агента сегодня в основном используются различные фреоны. Часть из них постепенно выводится из употребления ввиду негативного воздействия на окружающую среду. Доказано, что некоторые фреоны разрушают озоновый слой. Им на смену пришли новые, безопасные продукты, такие как R134а, R417а и пропан. Аммиак применяется лишь в масштабных промышленных установках.
Теоретический и реальный цикл холодильной установки
На этом рисунке представлен теоретический цикл простейшей холодильной установки. Видно, что в испарителе происходит не только непосредственно испарение, но и перегрев пара. А в конденсаторе пар превращается в жидкость и несколько переохлаждается. Это необходимо в целях повышения энергоэффективности технологического процесса.
Левая часть кривой – это жидкость в состоянии насыщения, а правая – насыщенный пар. То, что между ними – паро-жидкостная смесь. На линии D-A` происходит изменение теплосодержания холодильного агента, сопровождающееся выделением тепла. А вот отрезок В-С` наоборот, указывает на выделение холода в процессе кипения рабочей среды в трубках испарителя.
Реальный рабочий цикл отличается от теоретического ввиду наличия потерь давления на трубопроводной обвязке компрессора, а также на его клапанах.
Чтобы компенсировать данные потери работа сжатия должна быть увеличена, что снизит эффективности цикла. Данный параметр определяется отношением холодильной мощности, выделяемой в испарителе к мощности, потребляемой компрессором и электрической сети. Эффективность работы установки – это сравнительный параметр. Он не указывает непосредственно на производительность холодильника. Если данный параметр 3,3, это будет указывать, что на единицу электроэнергии, потребляемой установкой, приходится 3,3 единицы произведенного ею холода. Чем больше этот показатель, тем выше эффективность установки.
Устройство и принцип работы холодильной установки
Теоретический принцип работы холодильной установки — это 2 закон термодинамики и обратный цикл Карно. Принцип работы холодильной установки основан не на расширении или сжатии как в цикле Карно, а на конденсации и испарении (фазовые переходы). Процессы охлаждения, в которых не используются газы и движущиеся части, не называются установками для холода. Есть, например, термоэлектрический и магнитокалорический эффект.
Чем отличается холодильная установка от машины?
Холодильная установка представляет комплекс: сооружения с теплоизоляцией, холодильные машины, аппараты, предназначенные для получения, транспортировки и использования искусственного охлаждения. То есть установка в дополнение к 4 элементам холодильной машины или к составляющим безмашинного получения холода, содержит аппараты, трубопроводы, приборы, сооружения и теплоизоляцию для совершения технологических процессов и оптимальной эксплуатации холодильного оборудования.
Установка для холода используется для аккумулирования, транспортировки и хранения вторичных энергоресурсов. Для этого применяются, например, водоаммиачные абсорбционные установки, гелиоустановки с фреоновыми котлами для развития низкотемпературной энергетики.
Большинство устройств парокомпрессионные, которые отличаются типом компрессора (поршневой, винтовой, ротационный, спиральный или центробежный компрессор). Широко используются парокомпрессионные устройства с поршневым компрессором.
Монреальское соглашение требует вести работы по замене фреонов, которые воздействуют на озоновый слой. Поэтому применяются альтернативные хладагенты и смеси в домашних холодильниках и для процессов с переменной температурой отвода и подвода теплоты.
Не существует чёткой методики выбора оборудования для холода, учитывающей различные факторы. Объективным способом является сопоставление капитальных и эксплуатационных затрат (годовой экономический эффект).
Системы охлаждения
Машина для холода транспортирует с помощью компрессора теплоэнергию от холодного тела к тёплой среде. Работа чиллеров основана на термодинамическом цикле. Адсорбционные и абсорбционные чиллеры не имеют механического привода (двигателя). Целью чиллера является охлаждение до температурного уровня ниже температуры окружающей среды. Чиллеры похожи на тепловые насосы, но последние используют выделяемое тепло.
Чиллеры работают в соответствии со следующими принципами:
Первый в мире функционирующий чиллер построен в 1845 году американским доктором Джоном Горри во Флориде, который искал способы улучшить возможности лечения пациентов больницы в жаркой и влажной Флориде. Согласно медицинской доктрине «плохой воздух» был основным фактором болезней, а зимний лёд, привезённый из северных Великих озёр, был единственным вариантом охлаждения.
Машина Горри, в которой использовался обратный принцип двигателя Стирлинга, использовалась для производства льда и в то же время для охлаждения помещения (кондиционирование воздуха). Прототип был построен. В дальнейшем произошёл финансовый сбой. Д. Горри умер обедневшим.
В 1870-х годах холодильные установки стали экономичными. Первыми основными потребителями были пивоваренные заводы. Немецкий промышленник Карл фон Линде являлся крупным производителем.
Системы для получения холода
Холод, «генерируемый» чиллером, используется для технологических процессов, для кондиционирования воздуха, для производства льда (катки), консервации и охлаждения продуктов. Тепло поглощается прямо или косвенно. В случае непрямого получения холода используется охлаждающая жидкость (холодная вода, рассол, смеси с гликолем, чтобы избежать замерзания в трубах).
Конструкция простого теплообменника
Промежуточная жидкость охлаждается испаряющимся хладагентом в первом теплообменнике и поглощает тепло охлаждаемой среды во втором теплообменнике. При непосредственном использовании рабочего вещества применяется теплообменник с испаряющимся хладагентом с одной стороны и охлаждаемое вещество с другой.
Об устройстве и принципе работы холодильных установок в этом видео:
Абсорбционные холодильные системы
Абсорбционные системы относятся к классу теплоиспользующих машин, в которых охлаждение достигается путём слияния прямого цикла (преобразование тепла в работу) и обратного цикла (получение холода с затратой работы). Поэтому участвуют 3 источника тепла: окружающая среда, нагреватель и охлаждаемый объект. На рисунке ниже приведена схема простейшего абсорбционного холодильного аппарата, работающего на бинарных типах.
Абсорбционные чиллеры имеет дополнительный растворитель и холодильный контур. Рабочая жидкость состоит из двух компонентов: растворителя и хладагента. Хладагент должен быть полностью растворим в растворителе. Распространены абсорбционные чиллеры с водой в качестве хладагента и водным раствором бромида лития (LiBr) в качестве растворителя.
Принцип работы абсорбционной установки
Диффузионно-абсорбционный чиллер
Диффузионно-абсорбционный чиллер работает как охладитель поглощения. Изменение давления, однако, реализуется как изменение парциального давления. Для этого требуется третий компонент рабочей жидкости — инертный газ. Преимущество в том, что корпус под давлением герметично закрыт и не требует съёмных уплотнений, а устройство работает бесшумно. Технология используется, например, в кемпинговых и гостиничных холодильниках.
Адсорбционные холодильные системы
Адсорбционные системы работают с фиксированным растворителем (адсорбентом), при котором хладагент адсорбируется или десорбируется. Тепло добавляется в процесс во время десорбции и отводится во время адсорбции. Поскольку адсорбент не может циркулировать в цикле, процесс осуществляется только с перерывами.
Поэтому используются две камеры с адсорбентом, в которых адсорбция и десорбция проходят параллельно в течение одного рабочего цикла (от 6 до 10 минут). По окончании рабочего цикла происходит обмен теплом и тепловыделение в двух камерах (переключение, прибл. 1 мин.). Затем адсорбция и десорбция начинаются снова параллельно. Это обеспечивает практически равномерное охлаждение.
Компрессионная холодильная машина
В компрессорном устройстве рабочее вещество протекает по контуру потока, попеременно поглощая тепло при низкой температуре и выделяя (больше) тепло при более высокой температуре. Перекачивание, то есть введение механической работы, необходимо для поддержания потока и, следовательно, процесса.
Схема работы холодильника: 1 — конденсатор, 2 — терморегулирующий вентиль, 3 — испаритель, 4 — компрессор
Такие машины работают либо, чередуя испарение и конденсацию среды (хладагента), либо с газообразной средой (в основном с воздухом). Первый тип широко распространён и используется, например, в бытовых холодильниках, морозильниках, системах дозирования, кондиционерах, на катках, пищевых заводах и в химической промышленности.
Для работы машины согласно 2 закону термодинамики, энергия подаётся извне в виде механической работы, потому что только тогда тепло переносится из точки с низкой температурой в точку с высоким термозначением.
Пар из компрессорной машины всасывается и сжимается. Рабочее вещество конденсируется в конденсаторе, отдавая наружу теплоту. Жидкость направляется в дроссельное устройство, расширяется, давление падает, рабочее вещество охлаждается и испаряется. Процесс испарения продолжается в испарителе, хладагент забирает теплоту из холодного объёма. Компрессор всасывает испарённый и сухой (или перегретый) пар, и цикл повторяется.
Схема (а) и цикл (б) машины для холода со сжатием в компрессоре сухого пара
Пароструйное охлаждение
Охлаждение пара струи является тепловой системой для получения холода, в которой используется водяной пар в качестве хладагента и солевой раствор. Расширение струи водяного пара создаёт вакуум, и водяной пар отсасывается из испарителя. Испарение охлаждает резервуар для воды в испарителе, а вода используется в качестве охлаждающей жидкости.
Эффект Джоуля-Томсона. Процесс Линде
Для обеспечения охлаждения температуру газа (например, воздуха, гелия), который не конденсируется в рабочей зоне, снижают путём дросселирования. При использовании эффекта Джоуля-Томсона охлаждение составляет 0,4 К на перепад давления в дросселе. Хотя этот эффект мал, но его используют для достижения низких температур, близких к абсолютному нулю.
Системы часто выполняются в несколько этапов. Оборудование системы Джоуля-Томсона аналогично оборудованию компрессорного холодильника, но теплообменники не сконструированы как конденсаторы или испарители. Для оптимизации энергопотребления необходимо предварительно охладить газ в рекуперативном (противоточном) теплообменнике, чтобы газ возвращался из охладителя перед расширительным клапаном (дросселем).
В 1895 году Карл Линде использовал такую систему сжижения воздуха и сжижал большие количества (1 ведро/ч) воздуха. С тех пор процесс Джоуля-Томсона для сжижения воздуха стал называться процессом Линде.
Схема установки с циклом Линде
Принципиальная структура импульсного трубчатого охладителя
Импульсная трубка-холодильник является холодильной машиной, принцип действия которой соответствует принципу работы двигателя Стирлинга. Импульсной трубке-холодильнику не требуется механических подвижных частей. Это позволяет создавать компактные охлаждающие головки, а минимальный температурный уровень не ограничивается механическим теплом трения деталей. Самое низкое значение до сих пор было 1,3 K (–272 °C).
Термоэлектрический эффект. Элемент Пельтье
Элемент Пельтье также используется для охлаждения (или нагрева), который работает от электричества и не требует хладагента. Однако при большой разнице температур (50-70 К) охлаждающая способность падает до нуля. Для высоких перепадов температуры используются пирамидальные многоступенчатые структуры.
Эта технология используется для стабилизации температуры полупроводниковых лазеров и датчиков, в автомобильных кулерах, в термоциклерах и для охлаждения датчиков изображения в камерах от инфракрасного до ультрафиолетового излучения.
Магнитный холодильник
Схема работы магнитного холодильника
Другой метод получения холода основан на магнитных свойствах определённых веществ. При намагничивании некоторые вещества выделяют тепло. Такие вещества называют магнитокалорическими. При магнитном охлаждении вещество попадает в магнитное поле, где нагревается. Тепло рассеивается с помощью охлаждающей жидкости.
Материал, возвращённый к температуре окружающей среды, теперь покидает магнитное поле и размагничивается в области, подлежащей охлаждению. Материал поглощает тепло при размагничивании. Механическая работа выполняется снаружи, чтобы удалить намагниченный материал из магнитного поля. Такие системы для холода эффективнее систем, работающих с паром, но более дорогие.
Испарительное охлаждение
При испарительном охлаждении энергия в виде тепла (энтальпия испарения) извлекается из среды (например, воздуха или поверхности) путём испарения воды. Испарительное охлаждение также часто называют адиабатическим охлаждением, поскольку теоретически физический процесс представляет собой изоэнтальпическое преобразование из чувствительного в скрытое тепло.
Это процесс теплопередачи от высокой к низкой температуре, который усиливается фазовым переходом (вода в пар) и, таким образом, представляет собой самодействующий термодинамический цикл «по часовой стрелке». Следовательно, кроме транспортировки воздуха и воды, не требуется никакой дополнительной механической, электрической или тепловой энергии.
Испарительное охлаждение — старейший метод охлаждения. Испарение воды в воздухе создаёт охлаждающий потенциал, который ниже температуры окружающей среды. Достижимая пониженная температура зависит от климатических условий воздуха. Во многих случаях этого достаточно для кондиционирования воздуха в помещении. В некоторых технологических системах, таких как влажная градирня, охлаждающий эффект также увеличивается в случае воздушного охлаждения.
Возможная степень охлаждения зависит от температуры и влажности окружающего воздуха, то есть относительной влажности. Если относительная влажность воздуха близка к 100%, то есть воздух насыщен или даже перенасыщен (как в тумане), эффект не определяется. Давление насыщенного пара воды в воздухе слишком высокое. Однако, чем ниже относительная влажность, тем выше вероятность дальнейшего впитывания влаги, и тем больше воды испаряется, снижая температуру воздуха.
I—d-диаграмма влажного воздуха
Области состояний влажного воздуха в i—d-диаграмме
Все изменения в состоянии воздуха узнаете на i—d-диаграмме (абсолютная влажность в зависимости от температуры). Общее содержание энергии в воздухе дано в кДж/кг. Поскольку во время испарительного охлаждения (адиабатическое) содержание энергии не меняется, изменение состояния происходит сверху вниз. При относительной влажности 100% достигнете линии насыщения.
Испарительное охлаждение является критическим физическим процессом, стоящим за охлаждающим эффектом потоотделения (или, например, смачиваемой кожи на руке, подвергшейся воздействию ветра). Этот тип охлаждения также использовался на ранних этапах истории техники, поскольку в древние времена было известно, что глиняные сосуды увлажняются и позволяют испаряться через поверхность с открытыми порами, чтобы охлаждать содержимое (например, охладитель глинистого масла)
Получение холода. Принцип работы холодильника. (видео)
Коэффициент производительности или холодильный коэффициент
В реальных холодильниках работают разные циклы. Циклы холодильников на диаграмме p-V проходят против часовой стрелочки.
Идеальный цикл холодильника на диаграмме p-V, Qнагр 0, Tнагр > Tхол
Термическая эффективность охлаждения или нагрева производится в расчёте на количество механической работы. Как показатель качества её называют коэффициентом энергоэффективности или холодильным коэффициентом. Следующее относится к холодильной системе, использующей охлаждающую способность IQхолI: холодильный коэффициент = Qхол / Qнагр — Qхол
Холодильный коэффициент определяют как отношение отнятого тепла Qхол к затраченной работе A: холодильный коэффициент = IQхолI / IAI. Выходная тепловая мощность — это сумма поглощённой мощности охлаждения и работы. Эфективность работы холодильника – это количество теплоты, отобранной от охлаждаемых веществ на 1 джоуль работы.
Холодильный коэффициент больше или меньше 1
Чиллер используется не только для охлаждения, но и для отопления. Бытовой холодильник также подогревает воздух. Принцип отопления предложен Томсоном и используется в теплонасосах.
Интеграция систем охлаждения и отопления для эффективной работы
Общий вид холодильной машины с интегрированным теплонасосом
Для небольших магазинов (площадью до 800 м 2 ) в основном хладагентом является гидрофторуглерод (R-404A). Для обеспечения теплотой в зимнее время применяются такие варианты: утилизация тепла конденсации, использование воздушного теплового насоса или геотермального и другие.
Для супермаркетов и гипермаркетов применяются холодильные установки, работающие на диоксиде углерода. Поэтому целесообразно для снижения потребления электроэнергии по сравнению с применением электрического котла использовать воздушный тепловой насос, который позволит отапливать помещения при температуре наружного воздуха до –30 °C.
Разработки по интеграции теплового насоса в холодильную систему ведутся компаниями «Лэнд» и «Данфосс». Подобранный на максимальную производительность тепловой насос обеспечивает холодоснабжение супермаркета.
Использование насоса для тепла позволит снизить энергопотребление на 50% по сравнению с электробогревом. Комбинированная установка холодоснабжения и отопления магазина – это надёжный и эффективный метод энергоэкономии в торговой сети. Система позволит оптимизировать режимы работы супермаркета, уменьшить время оттайки и снижает эксплуатационные затраты. Экономическая выгода при эксплуатации очевидна.
Теперь знаете системы охлаждения и принцип работы холодильной установки на должном уровне. Советую посмотреть следующее видео по принципиальной схеме установки для получения холода: