Принудительное охлаждение двигателя мотоцикла
Мото двигатель и принудительное охлаждение
Как известно, на любом вездеходе с мотоциклетным двигателем просто необходимо принудительное охлаждение. Так как двигатели и на мотоцикле-то в жару периодически перегреваются, а будучи установленными на вездеход с более низкими скоростями и зачастую более высокими нагрузками — и подавно.
На самодельных вездеходах можно встретить двигатели от мотоциклов:
1) Иж-Планета — распространен на легких каракатах
2) Урал, Днепр — более мощные двигатели для тяжелых болотоходов
3) Иж-Юпитер — эти двигатели ставят не часто, но зачастую и их приходится видеть.
Ну и по порядку.
Для охлаждения двигателей Иж-Планета можно поставить электродвигатель с вентилятором, тумблер включения и выключения которого вывести на панель приборов. Завелся- включай. Такая схема охлаждения довольно распространена на легких каракатах.
Также эти двигатели можно охладить обдувом от СЗД.
Оппозиты также можно охлаждать вентиляторами на электродвигателях. На каждый цилиндр по вентилятору. Или можно вывести из двигателя вал и организовать принудительное охлаждение непосредственно от двигателя.
Мото двигатели охлаждать нужно обязательно. Только представьте себе медленное преодоление болот летом на болотоходе. Высокая нагрузка на двигатель и малая скорость движения быстро доведут ваш двигатель «до кипения». В интернете можно найти кучу разных способов охлаждения, но какой из них применить — решать вам.
Здесь я привел примеры всего лишь нескольких основных способов. Иногда для установки охлаждения может понадобиться специнструмент для автосервиса, но многие пользуются тем, что есть под рукой в гараже. Зачастую этого вполне достаточно. Удачи!
Миф о «воздушниках»: чем воздушное охлаждение круче жидкостного
Моторы-«воздушники» получили отставку совершенно зря. Достоинств у них столько, что любой новомодный турболитр с даунсайзингом в придачу позавидуют. И о многих плюсах воздушного охлаждения некоторые сегодня даже не догадываются.
На первый взгляд – взгляд потребителя, владельца семейной легковушки или целого коммерческого автопредприятия – преимущества двигателей с воздушным охлаждением лежат на поверхности:
«воздушник» конструктивно проще мотора с жидкостным охлаждением
он надежнее;
он дешевле в эксплуатации.
О минусах воздушного охлаждения все тоже как будто наслышаны, и напомнить о них здесь стоило бы лишь для соблюдения баланса аргументов. Но на самом деле есть только один значимый для потребителя недостаток мотора с воздушным охлаждением:
«воздушник» более шумный.
Все остальные минусы или давно потеряли актуальность, или всегда были досужими сказками. Так что есть повод поговорить об этих незаслуженно подзабытых агрегатах подробнее.
Из истории «воздуха»
Да, было время, когда автомобильные моторы с воздушным охлаждением проигрывали собратьям с охлаждением жидкостным (тогда говорили – водяным, поскольку антифризы были понятием чисто теоретическим). Двигатели-«воздушники» получались менее мощными, перегревались летом и не прогревались зимой. Из-за температурных проблем ресурс такого двигателя был меньше, часто случались отказы. Но все эти вопросы были решены к 1950-м годам, когда воспрянувшая после Второй мировой Европа начала пересаживаться с велосипедов на компактные автомобильчики. Дешевые и неприхотливые «воздушники» начали массово применять не только на VW Beetle, но и на Citroen 2CV, Fiat 500, NSU Prinz и прочих автомобилях. И это мы еще не говорим о целой плеяде серийных заднемоторных спорткаров Porsche, 4-, 6- и 8-цилиндровые моторы которых вплоть до 1998 года охлаждались воздухом!
В то время как немецкий «Жук» с его обдуваемым воздухом оппозитником во всем мире мигом стал образцом простоты и безотказности, в нашей стране сложилось устойчивое и по сей день не искорененное предубеждение против моторов воздушного охлаждения. Дескать, они и греются безбожно, и ломаются через день, да и силенок у них маловато. Виноват во всем бедолага «Запорожец», которому пришлось отдуваться за честь всех «воздушников» перед лицом целого СССР. Вместе с сомнительным качеством сборки ЗАЗикам досталась мизерная по масштабам СССР сервисная сеть. Сам по себе мелитопольский силовой агрегат МеМЗ был неплох, но обслуживаемый в кустарных условиях, заправляемый «автолом» и ремонтируемый «на коленке», он в самом деле не был примером надежности. Поэтому прежде чем продолжить повествование, хочу попросить читателя ассоциировать понятие «воздушник» не с «Запором», а с «Жуком» или хотя бы с «Ситроен де шво». Так будет честнее.
1. Он греется – неправда
На самом деле, температурные особенности моторов-«воздушников» можно отнести не к минусам, а к плюсам. Да, из-за меньшей теплоемкости и теплопроводности воздух не может так быстро отобрать тепло, как вода или антифриз. Но с другой стороны разница температур между стенками цилиндров и забортным воздухом больше, чем между теми же стенками и циркулирующей в системе охлаждающей жидкостью. Поэтому тепловой режим «воздушника» меньше зависит от погоды – то есть вероятность перегрева двигателя-«водянки» даже с самым большим радиатором в жару намного выше.
Еще одно очень важное преимущество «воздушника» – в три-четыре раза более быстрый прогрев после холодного пуска. Отсюда – и экономия топлива, и продление ресурса, и лучшая экология, и, наконец, удобство для водителя. Только у самых сложных «жидкостных» моторов образца 2010-х годов, имеющих три контура системы охлаждения, получается достигнуть подобных показателей прогрева.
2. Он громоздкий – неправда
Внешне «воздушник» может казаться более массивным, поскольку его цилиндры и головки со всех сторон окружены кожухами-воздуховодами, да и вентилятор обдува с дефлектором обычно выглядит более чем внушительно. Но предметное сравнение габаритов двух моторов с одинаковыми диаметром цилиндров и ходом поршня, но разными системами охлаждения, говорит о том, что габариты если и отличаются, то как раз в пользу «воздушника» – зачастую он оказывается чуть компактнее. Но главное даже не это.
Что касается размеров, справедливо будет принимать во внимание габариты не одного только двигателя, но и тех его неотъемлемых компонентов, которые крепятся отдельно, на кузове. Вот тут и проявляется неопровержимое преимущество «воздушника»: говоря современным языком, он выполнен в форм-факторе «моноблок», в то время как «водянка» имеет вынесенный на кузов громоздкий радиатор с вентилятором и системой шлангов. Которые, естественно, компактности силовому агрегату не добавляют.
3. Он ненадежный – неправда
На самом деле надежность двигателя с воздушным охлаждением существенно выше, ведь по статистике система жидкостного охлаждения служит причиной 20% всех отказов двигателя. А у «воздушника» как раз отсутствуют компоненты, обладающие низкой отказоустойчивостью: радиатор, термостат, помпа, трубопроводы, сальники и прочие уплотнения. Вентилятор и дефлекторы для обдува цилиндров воздухом устроены существенно проще, поэтому вероятность их отказа мизерна. Кстати, по этой же причине затраты на обслуживание «воздушников» также ниже.
4. Он шумный – правда
Что есть, то есть – шумит. И поделать с этим ничего нельзя. Точнее, идеи есть, но воплотить все их очень сложно. Беда в том, что у «воздушника» нет такой эффективной шумоизоляции, как двойные стенки рубашки охлаждения, заполненной водой или антифризом. И более того, все шумы мотора (механические, газообмена, горения) порой усиливаются ребрами цилиндров и головок. Поэтому конструкторы борются в первую очередь с источниками шумов, повышая жесткость деталей и применяя подпружиненные разрезные шестерни приводов, гидрокомпенсаторы клапанов, материалы с точно подобранным коэффициентом температурного расширения. Аэродинамические шумы вентилятора можно значительно уменьшить, но это дело нелегкое – нужны серьезные усилия конструкторов и технологов.
Двигатель Fiat 500
5. Малый ресурс – неправда
В первые 50 лет автомобильной эры к воздушному охлаждению конструкторы относились легкомысленно – дует мощный вентилятор на оребренные цилиндры, да и ладно. Но такое охлаждение часто было неравномерным, с застойными зонами и местными перегревами. Цилиндры деформировались, нарушались установленные зазоры цилиндропоршневой группы, масло коксовалось и выгорало. В результате детали изнашивались более интенсивно, чем у моторов с водяной «рубашкой», которая более равномерно распределяла выделяемое через стенки цилиндров тепло и отбирала его. Но организовать ровный обдув воздухом всех горячих зон двигателя оказалось не так уж сложно, и со временем двигатели-«воздушники» получили рациональное распределение тепла.
Еще один нюанс, уже из области высоких материй: при воздушном охлаждении проще организовать более высокую температуру стенок цилиндров (независимо от их головок). «Лишние» 15-20 °C снижают потери на трение колец о цилиндры (масло-то на стенках более жидкое!), а также уменьшают их износ (в том числе и коррозионный) и замедляют старение масла за счет его меньшего окисления. Выше уже было сказано о том, что мотор с воздушным охлаждением работает в холодном состоянии в несколько раз меньшее время, чем мотор с водяным – а значит, и время интенсивного износа трущихся пар намного меньше.
6. Он хилый – неправда
Причина для подобного обвинения есть, но суть проблемы такова, что ею можно пренебречь. Дело в том, что при увеличении нагрузки температура охлаждаемых воздухом цилиндров и их головок быстро повышается, а значит, повышается температура воздуха, поступающего в цилиндры. Отсюда – худшее весовое наполнение цилиндров рабочей смесью и кратковременное падение отдачи двигателя. Но исследования ученых-моторостроителей показывают, что разница коэффициента наполнения цилиндров у «воздушников» и «водянок» не превышает 3,5%. И это при 2 000 об/мин, а с ростом оборотов разница вообще стремится к нулю. Таким образом, теоретически существующую особенность эффективного наполнения цилиндров конструкторы решают за счет повышения рабочих оборотов двигателя. И, разумеется, данный вопрос вообще не касается наддувных двигателей воздушного охлаждения.
МОЙ МОТОЦИКЛ
Данную статью можно отнести к любому мотоциклу с воздушным охлаждением.
Все мы не понаслышке знаем, что двигатель мотоциклов Урал довольно сильно греется. После написания нескольких статей про двигатели 8.104 (ИМЗшная водянка) и двигатель 8.123 (825сс), и я решил рассмотреть данный вопрос подробнее на примере других производителей авто и мототехники.
Все наши двигатели работают по одному и тому же простейшему принципу, не важно — старенький М72 у вас или мощный топовый эрадин: мы сжигаем в определенном объеме топливо, а подвижная часть — поршень, соединенный через шатун с коленчатым валом, совершает механическую работу. Разумеется, что при сгорании топлива будет выделяться тепло. И сильнее всего будут греться поршни, камера сгорания с клапанами и втулками, находящаяся в головке и сам цилиндр. Нагрев выше определенных величин грозит серьезными последствиями: задиры, клин, коробление деталей цпг. Это наиболее неприятные последствия. А частая работа мотора в таких условиях сулит ему очень недолгий срок жизни. Учитывая то, что принцип работы и основные части любого поршневого двигателя одинаковы, я рассмотрю ниже некоторые конструкции мотоциклетных и автомобильных двигателей воздушного, воздушномасляного и водяного охлаждения.
Двигатель Урал 650 и 750сс. Принципиальная конструкция абсолютно одинаковая, различаются лишь некоторыми конструктивными изменениями. Очень не любят долгой езды на большой скорости, особенно моторы 650. С моторами 750 немного проще: качественные поршневые кольца, кованые поршни и цилиндры из алюминия с залитой чугунной гильзой значительно лучше отводят тепло, поэтому продолжительная езда на скоростях до 130 безопасна для мотора. А вот если начинать отжигать и гонять, давать хорошие нагрузки мотору, ездить в пробках, начинаются проблемы с перегревами.
Теперь о конструкции головок и цилиндров различных мотоциклов.
Воздушномасляные моторы мотоциклов BMW серий R11х0 и отчасти 1200 имеют очень скудное оребрение головок и цилиндров. А оребрение последних вообще чисто символическое.
И это несмотря на высокие степени сжатия, мощность и крутящий момент. Инженеры сочли нужным отводить тепло от наиболее нагретых частей головок цилиндров: полость у выхлопного коллектора и полость под клапанной крышкой, а остальное отдать на откуп воздуху. Так же заметим, что проведенные через цилиндры смазочные каналы для рокеров являются дополнительным охлаждающим элементом. Поршни принудительного охлаждения не имеют. Тепловой зазор между цилиндром и поршнем составляет 0,12 мм. Масляная система имеет два контура и двухсекционный масляный насос (каждая секция работает на свой контур). Первый контур работает на смазку трущихся частей, второй контур работает на охлаждение. Система снабжена масляным термостатом и масляным радиатором, предназначенные для поддержания равномерной температуры масла. В итоге получился неубиваемый мотор, который хрен перегреешь: ни адовые отжиги, ни нагрузка, ни температура окружающего воздуха, все ему нипочем.
Японцы пошли по совершенно другому пути. Они решили обильно орошать все внутренности маслом, как на авиационных моторах времен Второй Мировой Войны.
Обратим внимание на оребрение: равномерное, небольшое, у цилиндров оно сходит на нет. При этом задняя часть рядной четверки явно будет в недостатке охлаждения, скажет диванный скептик. В двигателе применено принудительное охлаждение специальными масляными форсунками наиболее нагретой детали двигателя — поршня. Так же применено принудительное охлаждение маслом полостей под клапанной крышкой. Зазор между поршнем и цилиндром 0,04 — как у водяных моторов.
Так же, как и у BMW, двигатели оснащены двухсекционным масляным насосом и масляная система так же имеет два контура.
Итог: неубиваемый мотор с толстенными гильзами, на котором можно ехать как хочешь и эксплуатировать так, как душе угодно. Ресурс — отнюдь не в пример даже новым Уралам. Перегревы отсутствуют как таковые в принципе. Обладают огромным запасом прочности и в связи с этим пользуются большой популярностью у драгрейсеров.
Вернемся к BMW. Модель R1200GS 2014 года. Хитрые и умные инженеры концерна не стали делать полностью водяной мотор, как того многие ожидали, а решили опять же отводить тепло от наиболее нагретых мест: камера сгорания, верхняя часть цилиндров. Остальное охлаждается набегающим потоком воздуха и маслом.
Аналогичная система применяется на болидах формулы-1, где каждый грамм на счету. Писать, что получилось в итоге, думаю будет лишним.
Оппозитный мотор автомобилей Subaru серий EJ выпуска 80х-90х годов.
Применено принудительное охлаждение днищ поршней. На этих же двигателях позднее от масляных форсунок решили избавиться — нафига сейчас ресурс? При этом эти моторы спокойно бегают по 600 тысяч км и совершенно не думают умирать, а бегают они очень и очень бодро. Шланс, привет!))
На этот мотор я обратил внимание не просто так. Возникли вопросы: а не будет ли масло в цилиндры затекать, и не начнет ли мотор его жрать как пьяный динозавр… Инженеры Subaru эти сомнения развеяли.
Ну и напоследок, мотор Honda CBX1100. 6 цилиндровый рядник воздушного охлаждения, явно не изобилующий оребрением. Кстати прет как надо и практически не греется.
А теперь с чем мы вышеописанные конструкции сравниваем.
Мотор Урал 750сс и его производные форсированные собратья.
В стандарте 750ка (825сс) — низкофорсированный маломощный и низкооборотистый (по меркам всяких эрадинов) оппозитный мотор воздушного охлаждения с очень развитым и большим по площади оребрением — не в пример собратьям из европы и страны восходящего солнца. Причем торчащие по бокам «котлы» находятся в очень выгодном положении в плане отвода тепла.
Мною были проведены опыты и дорожные испытания с моторами 750 и 825сс.
Итоги.
Правильно настроенная 750ка не любит стоять подолгу на одном месте в запущенном состоянии — изза отсутствия набегающего потока воздуха мотор быстро нагревается. Очень любит езду на скоростях около 100 км/ч, до 130 км/ч можно ехать довольно продолжительно. Причем после остановки до цилиндров можно дотронуться рукой и держаться, а слюна на ребрах головок будет лениво шипеть. Продолжительная езда на больших скоростях не производилась. Мотор 825сс греется чуть больше 750ки (восприятие субъективное). При превышении скорости в 130 км/ч начинаются интересные вещи. Непродолжительная езда до 160 км/ч безопасна, а при продолжительной изза хорошего охлаждения головок и цилиндров и очень высокой температуры днища поршня начинают появляться задиры и прихваты. До клина дела не доходит, поскольку мотор сразу дает понять, что его перегрели резким падением мощности и скорости. Оба мотора очень не любят низкую скорость и высокую нагрузку. К чему я это пишу? Если вы не рукожоп, ездите тихо и мирно, в мотор в доработке не нуждается — и так все отлично работает. Совсем другое дело, если вы любитель открутить ручку… Тут мы сталкиваемся с проблемой отвода тепла от термонагруженных частей двигателя. В первую очередь — это днище поршня. Во вторую — головка цилиндра. Это означает, про придется организовать отвод тепла наиболее доступным и простым способом от сильно нагретых частей двигателя и температурная стабилизация масла. Конкретно я на своем моторе планирую применить масляные форсунки. Рассмотрим две схемы.
Крепление форсунки снизу.
Плюсы: близко расположенный питающий масляный канал, система не изменяет внешний вид двигателя. Минусы: большая длина форсунки. На определенных оборотах это может сыграть злую шутку — войдя в резонанс попросту отвалиться и наделать в моторе бед. Так же с такой системой масло, вырывающееся из сопла, будет поливать только определенный участок днища поршня (черной стрелкой показан путь масла), а значит оно там будет находиться недолго и не отведет максимум тепла. Такая система была применена на отечественном спортивном оппозитном двигателе с наддувом АС-500К, по который я писал в одной из своих статей тут :
Крепление форсунки сверху.
Так же не лишним будет снимать тепло с полости под клапанной крышкой, как это сделано на некоторых вышеописанных конструкциях. Но то отдельная, очень большая тема для размышлений, на данный момент прорабатывается. Всем успехов.
Система жидкостного охлаждения мотоцикла – блог мотоклуба RC Crazy Snails
Система охлаждения мотоцикла предназначена для защиты двигателя от перегрева, в результате чего может произойти его разрушение, выход из строя или заклинивание. Традиционно, производители мотоциклов стремятся искусственно сдерживать температуру рабочего двигателя в пределах от 75 до 90 градусов. Эти величины являются оптимальными для продолжения срока службы трущихся деталей, которых внутри двигателя моет быть более 3 000.
Существует несколько видов систем охлаждения, отличающихся принципиально по схеме отвода излишней тепловой энергии. Это воздушное и водяное охлаждение мотоцикла.
Мото двигатель и принудительное охлаждение
Как известно, на любом вездеходе с мотоциклетным двигателем просто необходимо принудительное охлаждение. Так как двигатели и на мотоцикле-то в жару периодически перегреваются, а будучи установленными на вездеход с более низкими скоростями и зачастую более высокими нагрузками — и подавно.
На самодельных вездеходах можно встретить двигатели от мотоциклов: 1) Иж-Планета — распространен на легких каракатах 2) Урал, Днепр — более мощные двигатели для тяжелых болотоходов 3) Иж-Юпитер — эти двигатели ставят не часто, но зачастую и их приходится видеть.
Ну и по порядку. Для охлаждения двигателей Иж-Планета можно поставить электродвигатель с вентилятором, тумблер включения и выключения которого вывести на панель приборов. Завелся- включай. Такая схема охлаждения довольно распространена на легких каракатах. Также эти двигатели можно охладить обдувом от СЗД.
Оппозиты также можно охлаждать вентиляторами на электродвигателях. На каждый цилиндр по вентилятору. Или можно вывести из двигателя вал и организовать принудительное охлаждение непосредственно от двигателя.
Мото двигатели охлаждать нужно обязательно. Только представьте себе медленное преодоление болот летом на болотоходе. Высокая нагрузка на двигатель и малая скорость движения быстро доведут ваш двигатель «до кипения». В интернете можно найти кучу разных способов охлаждения, но какой из них применить — решать вам. Здесь я привел примеры всего лишь нескольких основных способов. Иногда для установки охлаждения может понадобиться специнструмент для автосервиса, но многие пользуются тем, что есть под рукой в гараже. Зачастую этого вполне достаточно. Удачи!
ЖАРОУТОЛИТЕЛЬ ДЛЯ УРАЛА
В среде владельцев «Уралов» и «Днепров» всегда выискивались оригиналы, которым нхватало мощности в стандартном моторе их машин. И они принимались за форсировку. Проводили ее разными способами: в ход шли переделанные коленвалы, распредвалы, новые карбюраторы, облегченные маховики. В некоторых случаях удавалось мощность повысить. Правда, зачастую в ущерб надежности и ресурсу. И почти всегда форсированные движки перегревались.
Если не хотите по неопытности совершить те же ошибки, познакомьтесь с некоторыми вариантами улучшения качеств двигателей «Уралов» московского механика-профессионала Юрия Попова.
Забегая вперед, скажу, что опыты, направленные на повышение мощности двигателей «Уралов», позволили достичь показателя порядка 40 л. с. Это стало возможным после установки клапанов увеличенного диаметра, модифицированного распределительного вала и поршней диаметром 79 мм (нормальный размер — 78 мм). Последнее продиктовано отнюдь не желанием увеличить рабочий объем двигателя. Новый диаметр позволяет использовать поршневые кольца взамен изделий Мичуринского завода, известных по прилавкам как «Кольца поршневые».
Чтобы снизить теплонапряженность в цилиндро-поршневой группе, в двигателе смонтировали масляный радиатор. Сделали так: в канал между насосом и фильтром врезали два штуцера, таким образом канал оказался «разрезанным». Теперь масло, прежде чем попасть на трущиеся поверхности, охлаждается в радиаторе. Двигатель подвергли всесторонним испытаниям, которые подтвердили: мощность возросла до 40 л. с.
Но вскоре наступило разочарование: форсированные двигатели повели себя в эксплуатации не лучшим образом. На шоссе при скоростях около 100 км/ч никаких дурных признаков не наблюдалось, но в режиме городского движения мотор нагревался сверх положеного. А как же масляный радиатор? Да никак! Маслонасос в ирбитском исполнении нагнетает масло с недостаточным давлением. Так что радиатор не спасает от «теплового удара» — наступает «прихват».
Чтобы предупредить перегрев поршней, спроектировали и изготовили систему их принудительного масляного охлаждения. Можно было пойти двумя путями. Первый — интенсифицировать теплоотвод от стенок цилиндра, заменив воздушное охлаждение жидкостным. Второй — попытаться охладить сам поршень. Мы выбрали второй.
Вот как осуществили замысел. В картер двигателя вмонтировали форсунку, ориентированную так, что вылетающая из нее под давлением струя масла попадает на внутреннюю часть днища поршня. Поскольку температура поверхности поршня существенно выше температуры масла, величина отводимого тепла значительна. Это-то нам и нужно! Не станем претендовать на уникальность своего решения — для снижения теплонапряженности поршней в современных дизельных двигателях легковых автомобилей наряду с жидкостным охлаждением давно применяется и вышеописанный способ.
Итак, на двигателе подопытного «Урала» взамен штатного односекционного маслонасоса установлен двухсекционный, представляющий собой две доработанные стандартные секции с общим приводом. В каждой из секций идет своя работа: в верхней (штатной) — масло нагнетается в фильтр и поступает по каналам к трущимся деталям. В нижней — оно поднимается из поддона, подается в масляный радиатор и затем через специальные форсунки разбрызгивается на днища поршней со стороны картера. Отобрав тепло от поршней, масло стекает в поддон, и процесс циклично повторяется.
В данной конструкции использован стандартный силуминовый поддон двигателя и самодельные взаимозаменяемые поршни диаметром 79 мм со специальными выемками под форсунки.
После монтажа системы двигатель подвергли стендовым испытаниям — чтобы понять, каких размеров должен быть масляный радиатор. На удачу, внешние габариты 200х100 мм оказались достаточными для обеспечения нормальной температуры двигателя во всех режимах работы. Однако радиатор такого размера неоправданно велик для двигателя объемом 650 куб. см. К сожалению, это «заслуга» неэффективного маслонасоса — он один мешает уменьшить габариты радиатора.
Как реализовать водяное охлаждение на оппозит.
Вчерась в магазине видел головы сделанные по второму варианту, тоесть внутренние рёбра судя по всему удалены, а по наружним все это дело обварено рубашкой. Выглядит сия модернизация надо сказать ахово. Хотя в кустарных условиях этот способ на мой взгляд самый наилучший. Ты вот лучше прикинь ещё, от чего у тебя помпа в движение приводится будет.
:У нас в МСК продаёцца готовый комлект, около 350$. для
Shumi
:
А под какие поршни ращитаны цилиндры в таком наборе. На вояж мона подобрать?
Вот тут родилась ещё одна мысля: а что, если с цилиндра срезать все рёбра и его слегонца на токарном обточить, после варим новую рубашкуводяного охлаждения, где внутренний диаметр (под «цилиндр») сделан чуть-чуть с натягом, что бы после напрессоватьрубаху на цилиндр горячим способом. Как вы зацените такой вариант.
А вот что если просверлить ребра охлаждения вдоль цилиндров у основания и запрессовать туда трубки по которым будет охлаждающая жидкость бегать?
это типо чего, она всё время работает как мот заведён, а в принципе коли на машине работает, то почемубы и на моце не поработать, хорошая идея; а от какой модели. А у тебя самого водянка есть, иили тоже хотиш поставить (если есть, то опиши как делал, или ты готовый набор покупал?). для finder
Ну иномарки не все с водяным охлаждением. Хурлеи и те воздушники. А самому заморачиваться с водяным охлаждением геморно, но попробовать можно. По-моему если уж захотел водянку, то лучше разорится на 12 килорубликов и прикупить готовый набор от какого-нибудь КБ. Там перцы лихие сидят. По идее фигню делать не станут.
а шоб они у нас были, вот в начале июля в Питер дёрну, так там мож чего и прикуплю!
отлить новый цилиндр в него еще в расплавленом состоянии из нержавки трубопровод вставить помпу от Оки и радиатор от Иж юнкер его с головой хватит
а зачем ей туда попадать, мона сделать охлаждение только цилиндеров, а голову оставить с воздушным (ИМХО я себе так и хочу делать)
: Да ты правельно понял, но если оставить головки воздушного охлаждения то они будут постоянно перегриватси и деформироватся, а это неизбежно приведет к их замене
спасибо, что надоумили, а тоб натворил делов. Так что если буду мутить то уже займусь полным охлаждением. И вот ещё что: какая должна быть рабочая температура иотоцикла, не подскажите?
Система жидкостного охлаждения мотоцикла – блог мотоклуба RC Crazy Snails
Проблема заключалась в системе охлаждения, о которой подробнее пойдет речь дальше, и выражалась проблема в систематическом срабатывании лампы перегрева двигателя практически на пустом месте. Связано это было с двумя причинами: во-первых текла помпа и жидкость уходила из системы, во-вторых количество жидкости в системе не пополнялось из резервного бачка.
Начнем с того, что есть у меня мотоцикл Honda VTX1800. Это мотоцикл с жидкостной системой охлаждения. Это означает, что охлаждается он специальным термоагентом — охлаждающей жидкостью, которая циркулирует по каналам внутри двигателя и по системе трубок вне двигателя.
Хоть рассказ пойдет на примере VTX1800, все то же самое относится и ко всем мотоциклам с жидкостной системой охлаждения, поскольку в этой области ничего особо не менялось еще с зари автомобилестроения. Нужно отметить, что в качестве охлаждающей жидкости в VTX1800 используется антифриз на основе этилен-гликоля, хотя в других системах может для этих целей использоваться любая другая жидкость.
Основной же проблематикой статьи будет наличие на Honda VTX1800 расширительного бачка охлаждающей жидкости в самой нижней точке системы охлаждения. Суть проблемы заключается в том, как залить охлаждающую жидкость, чтобы система, которая, на первый взгляд, нарушает все законы физики, работала правильно. В статье будут рассмотрены физические основы процесса и даны рекомендации по работе с системой охлаждения.
На рисунке показана общая схема работы системы охлаждения.
Из рисунка видно, что система охлаждения состоит из двух контуров: большого круга (отмечен зеленым) и малого круга (отмечен красным). Эти два контура соединены друг с другом через механическую систему, называющуюся термостат (3). Термостат по сути представляет собой клапан, который реагирует на изменение температуры охлаждающей жидкости. Термостат устанавливается на границе большого и малого контуров охлаждения и является “переключателем” между ними. При разогреве термостата клапан медленно открывается и пропускает охлаждающую жидкость из малого круга в большой.
Также в системе присутствует помпа (1), которая представляет собой насос, заставляющий жидкость циркулировать в системе охлаждения. Для мотоцикла Honda VTX1800 эта помпа напрямую соединена с главным валом двигателя (5) и скорость циркуляции жидкости напрямую зависит от оборотов двигателя.
Еще одной важной частью системы является радиатор(6). Он необходим для повышения площади теплоотдачи, поскольку, как известно из школьного курса физики, чем больше площадь рассеивания тепла, тем эффективнее тепло будет отдаваться. Радиатор представляет собой систему из множества тонких трубок, свернутых в змеевик. Каждая трубка покрыта снаружи тонкими ребрами, увеличивающими площадь рассеивания тепла.
Особо стоит выделить заливную горловину системы охлаждения (4), от которой зависит контроль давления в охлаждающей системе. Заливная горловина снабжена специальной пробкой, о которой пойдет речь подробнее ниже и шлангом для отвода излишков охлаждающей жидкости в расширительный бачок (2).
Зачем все это нужно?
Если Вы уже знаете ответ на этот вопрос, то следующие несколько абзацев статьи Вы можете спокойно пропустить.
Суть жидкостной системы охлаждения заключается в том, чтобы отводить излишнее тепло от горячей зоны двигателя. Как мы знаем из школьного курса физики, материалы при нагреве имеют свойство расширяться, однако различные материалы имеют различные коэффициенты расширения, а следовательно по-разному реагируют на нагрев. Поэтому, при перегреве двигателя, который состоит из деталей разных материалов, изменяются зазоры между элементами, что может привести к преждевременному износу деталей.
Кроме того, при работе двигателя внутреннего сгорания, необходимо учитывать свойства технических жидкостей, таких как масло и бензин.
Масла обладают смазочными свойствами в ограниченном производителем температурном диапазоне и перегрев может пагубно сказаться на их смазочных характеристиках.
Бензин, при различных температурах, также изменяет свои свойства и, в случае перегрева рабочей зоны, может начать самопроизвольно воспламеняться просто от соприкосновения паров с раскаленными стенками цилиндра.
Таким образом необходима система отвода тепла от горячей зоны, чтобы снизить вероятность возникновения пагубных для двигателя условий, описанных выше.
В большинстве мотоциклов не применяется система жидкостного охлаждения, поскольку им для отведения тепла вполне достаточно набегающего потока воздуха на оребрение горячей зоны. Однако в случаях, когда оребрение обдувается не достаточно или в случаях, когда двигатель очень “горяч”, необходимо использовать дополнительные системы отведения тепла, например жидкостную. То есть в этом случае двигатель нагревает жидкость, которая затем остывает на дополнительном оребрении, находящемся за пределами горячей зоны двигателя. В таком случает жидкость выступает в качестве “передатчика” тепла от горячей зоны к охлаждающему оребрению.
Особо отмечу, что значения температур открытия термостата и включения принудительного обдува, для различных двигателей могут быть различны.
Зачем нужен расширительный бачок?
Дело в том, что при разогреве охлаждающей жидкости происходит ее расширение, точно так же, как любых веществ. При этом в системе охлаждения повышается давление и, если вовремя это давление не сбросить, то может произойти разрыв системы охлаждения и проникновение охлаждающей жидкости в окружающую среду или, что гораздо хуже, в камеру сгорания двигателя.
Система охлаждения VTX1800 рассчитана на давления в пределах от одной до 1,35 атмосферы. Рабочее давление системы обычно указывают на крышке заливной горловины.
Вернемся к системе выпуска излишней охлаждающей жидкости при разогреве и расширении. Для этих целей предназначена крышка заливной горловины и расширительный бачок в системе.
Крышка имеет весьма интересную конструкцию. Чертеж ниже я взял из интернет и он напрямую не относится к Honda VTX1800, однако у моего мотоцикла крышка сделана точно так же.
На изображении видно, что крышка, на самом деле не просто крышка, а система из двух клапанов. Клапан 1 на рисунке а является запорным клапаном, реагирующим на повышение давления в системе. Этот клапан запирается пружиной, усилие которой расчитано на определенное давление внутри системы. При превышении давления, клапан открывается, выпуская охлаждающую жидкость.
Куда он ее выпускает? На рисунке ниже показана схема установки крышки с клапаном, относительно системы охлаждения моего мотоцикла. Для других мотоциклов расположение заливной горловины может немного отличаться.
Как можно понять, при открытии клапана жидкость попадает в дренажную трубку расширительного бачка, после чего стекает в бачок и держится там в качестве резерва на случай охлаждения жидкости и уменьшения ее объема.
Почему жидкость не должна увеличиваться в объеме понятно, но вопрос уменьшения ее объема остался за кадром. Дело в том, что не только увеличение объема охлаждающей жидкости несет в себе угрозу системе в целом, но и уменьшение объема также может привести к ряду проблем. Дело в том, что система охлаждения герметична, то есть не сообщается с огружающей средой. Это значит, что при уменьшении объема охлаждающей жидкости образуется разряжение в системе. Это приводит к “схлопыванию” соединительных трубок и возникновению ситуации, когда через стыки трубок в систему может попасть атмосферный воздух.
Для того, чтобы избежать ситуации с разряжением также используется пробка заливной горловины. Дело в том, что в пробке кроме выпускного клапана также предусмотрен впускной клапан, который позволяет охлаждающей жидкости из расширительного бачка восполнить нехватку объема в системе. Впускной клапан отмечен номером 5 рисунка b, схемы устройства крышки заливной горловины.
Почему жидкость будет возвращаться из бачка, который внизу? Закон сообщающихся сосудов заставит всю жидкость просто стечь вниз!
А что делать и почему это так получилось?
Компоновка большинства мотоциклов предполагает вынужденную экономию места. В этом случае расширительный бачок оказывается зачастую в самом низу системы и с точки зрения привычной нам, жидкость должна только стекать вниз, но никак не подниматься по трубке без специального насоса. Однако это не так. Дело в том, что закон сообщающихся сосудов справедлив только в том случае, когда оба сосуда являются открытыми внешней среде. Попробуйте соединить трубкой шприц и открытую банку с водой. Выберите поршнем шприца некоторое количество воды и поднимите шприц вверх. Вы увидите, что вода из шприца не позвращается в банку. Это связано с тем, что шприц является герметичной системой по отношению к внешней среде. Вода может вытечь из него только в том случае, если ее чем-нибудь в шприце дополнить. Без увеличения объема жидкости в шприце, разряжение будет удерживать жидкость на месте.
Примерно таким же образом работает система охлаждения мотоцикла. При увеличении объема охлаждающей жидкости, ей некуда деваться, кроме как в расширительный бачок. При уменьшении объема разряжение само вернет охлаждающую жидкость обратно из бачка в систему.
Примерная схема работы этой системы показана на рисунке
Однако в этой ситуации есть несколько потенциальных угроз. Дело в том, что при возникновении воздушного пузыря в дренажной трубке бачка система перестанет работать. Это связано с тем, что газы сжимаются и расширяются гораздо лучше жидкостей, значит при возникновении разряжения в системе охлаждения первым делом будет изменять свой объем воздух в трубке. Что приведет к тому, что жидкость так и останется в расширительном бачке.
Может хватит уже теории? Давай к мотоциклам!
Теперь переходим к теме статьи, а именно смене охлаждающей жидкости в VTX1800.
Я не буду описывать процесс снятия бензобака и слива жидкости. Там все достаточно очевидно и не вызвало вопросов даже у такого дилетанта, как я. Остановимся особо на процессе заполнения жидкостью системы.
Итак, согласно всему вышесказанному Вам нужно добиться того, чтобы в системе не осталось пузырей с воздухом и убедиться, что охлаждающая жидкость не только уходит в бачок, но и возвращается обратно. Делать это необходимо в несколько этапов.
Этап первый, заливаем жидкость.
Собственно ничего сложного тут нет. Заливаем жидкость точно в отверстие заливной горловины до тех пор, пока она не польется обратно. Однако после этого рано закрывать крышку. Дело в том, что каналы охлаждения достаточно тонкие и в них могут образовываться воздушные пробки. Чтобы от них избавиться необходимо: во-первых заливать жидкость медленно, а во-вторых после залития жидкости аккуратно покачать мотоцикл в разные стороны. Результатом будет понижение уровня жидкости в горловине и идущие из горловины пузыри воздуха. После этого нужно долить еще жидкости.
Повторять этот процесс до тех пор, пока пузыри не перестанут выходить из горловины и уровень жидкости не стабилизируется.
Все, этап первый завершен, закрываем крышку.
Этап второй, прогон жидкости.
После того, как первый этап пройден, заводим мотоцикл. Это нужно, чтобы жидкость окончательно побежала по всем охлаждающим каналам и заполнила их.
Для этого нужно на заведенном мотоцикле несколько раз резко погазовать. В таком случае помпа, напрямую соединенная с валом двигателя, резко повысит давление в системе и выгонит оставшиеся пузыри. Однако не нужно забывать, что система еще не до конца заполнена и серьезный прогрев мотоциклу противопоказан.
На этом второй этап завершен.
Этап третий, долив жидкости.
На VTX1800 очень оригинально расположена горловина, так что мне пришлось придумать вот такую систему для залива.
Собственно это трубка из аквариумного магазина, стойка для растений и воронка из садоводческого магазина. Очень удобно.
Итак открываем крышку и заливаем еще жидкости. Вы будете удивлены тем, сколько ее еще войдет. В процессе долива жидкости уже необходимо контролировать уровень в расширительном бачке. Если уровень после долива жидкости в систему будет не между рисками, то мы рискуем или облиться горячей охлаждающей жидкостью(если жидкость выше рисок), или получить воздушный пузырь в системе при всасывании остывающей жидкости(если жидкость ниже рисок). Так что в бачок необходимо долить жидкости до уровня. На моем VTX1800 для этого есть отдельная горловина расширительного бачка. Она находится слева под водительским сиденьем, за пластиковой крышкой. Крышка держится на резинках, так что смело дергайте, болтов там нет.
После долива, закрываем все крышки и готовимся заводить мотоцикл на этапе четыре.
Этап четыре, контроль работы.
На этом этапе мы избавимся от последего воздушного пузыря в трубке идущей от горловины в расширительный бачок и окончательно приведем систему в готовность.
Еще немного теории того, что будет происходить:
Заводим мотоцикл и прогреваем его до тех пор, пока не сработает датчик температуры и не включится вентилятор. Теоретически это самая горячая точка разогрева системы и следовательно самый больший объем охлаждающей жидкости.
В процессе разогрева контролируем бачок. Вначале из трубки в бачок пойдут пузырьки воздуха. это нормально, из трубки разогревающейся жидкостью выпирает воздушную пробку. Затем уровень жидкости начнет медленно повышаться
На рисунках показано, как повышался уровень в моем случае
После того, как запустится вентилятор, выключаем двигатель и начинаем внимательно следить за уровнем жидкости в бачке.
Уровень жидкости начнет медленно понижаться, поскольку охлажлающая жидкость сжимается и понемногу уходит обратно в систему. Естественно, что без циркуляции жидкость остывает очень медленно и процесс может затянуться. Теоретически, если дождаться остывания жидкости до комнатной температуры, то ее уровень должен быть чуть ниже, чем в начале этапа. Однако объем трубки достаточно мал и отследить это понижение очень сложно, да и не очень нужно.
Если уровень жидкости в бачке уменьшается, то все сделано правильно и мотоцикл можно собирать и выводить на дорогу. Если нет, то необходимо повторить этапы начиная со второго. В системе где-то еще остались пузырьки воздуха. Пожалуйста, будьте аккуратны и дождитесь остывания жидкости в системе. Я не выполнил этой рекомендации и получил пару мелких ожогов в процессе настройки.
А дальше необходимо периодически смотреть на бачок и отслеживать уровень жидкости.
Резкое уменьшение уровня жидкости будет указывать на разгерметизацию системы охлаждения. Разгерметизацию имеет смысл быстро обнаружить и устранить в домашних условиях, поскольку посреди шоссе это будет сделать весьма проблематично.
Прекращение же теплового колебания уровня жидкости будет указывать не только на разгерметизацию системы, но и на то, что в систему попал воздух.