Пусковой конденсатор на авто

Конденсаторное пусковое устройство Inspector Charger. Будущее наступило…

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Всем Здрасти! Сегодня кнопки жать обязательно!)
Конденсаторное пусковое устройство Inspector Chargerрадикально отличается от своих собратьев пускачей на основе литий-ионных и литий-полимерных встроенных батарей! Задача у всех «пускачей» одна — запуск мотора, а вот подход к решению этой задачи разный!
Компания Inspector любезно предоставила нам на тестирование свою новинку — пусковое устройство Charger, из новой линейки пусковых устройств, на основании того, что я уже несколько лет являюсь пользователем их продукции и уже тестировал пуско-зарядное устройство.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

На данный момент, на рынке присутствует всего 2 пусковых устройства на основе суперконденсаторов большой емкости (ионисторы), поэтому информации по ним маловато.
Заявленные характеристики Charger:
Пусковой ток 900А (Запомните, стартер возьмет ровно столько, сколько ему требуется для прокрутки мотора!)
Возможность запустить бензиновый мотор объемом до 6 литров, дизельный мотор до 3 литров, обязательное условие напряжение бортовой сети ТОЛЬКО 12 Вольт!
Подзарядка пускового устройства напрямую от аккумулятора автомобиля, от РОЗЕТКИ 12Вольт, от выхода USB 5В/2А.
На этом все, характеристики закончились) (Объясню все ниже по тексту)

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Комплектация: пусковое устройство Inspector Charger, кабель подключения к розетки 12В(прикуриватель), чехол, документация, красивая коробка!

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

А сейчас я распишу, как это все выглядит — мы привыкли, что при пользовании классическими пусковыми устройствами, что в них встроенные аккумуляторы разной емкости, и конечно же, перед использованием подобного пускача, его требуется ЗАРЯДИТЬ, на это потребуется несколько часов, в зависимости от емкости батарей, ну и как следствие, если пусковое устройство разрядилось на «треть» заряда во время попыток завести мотор, потребуется снова подзарядка девайса, и снова это займет не 10 минут.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

А в пусковых устройствах на конденсаторах отсутствуют аккумуляторы, там используются ионисторы, на подзаряд которых с 0 до полного заряда в 15.6 Вольта требуется примерно 5-6 минут при подключении от розетки 12В, а при подключении напрямую на акб, время на заряд в «боевое» положение потребуется около 2-3 минут, кстати говоря, после консультации со специалистом, предположили что речь идет о емкости конденсатора МИНИМУМ в 500 Фарад.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

То есть, спрогнозирую ситуацию, у вас подсел аккумулятор в автомобиле, Вы подключаете к ПОДСЕВШЕМУ акб этот Charger, пускач заряжается от вашего акб в течении нескольких минут, и аккумулирует ОБРАТНЫЙ заряд, производя пуск мотора, главное условие, что напряжение акб должно быть не ниже 4 Вольт, сразу уточню, ниже 4 Вольт это металлолом. (Подключал этот девайс к аккумулятора с напряжением 3 Вольта — на дисплее девайса загорался значок «Ошибка»)
Еще одно ВАЖНОЕ отличие конденсаторного пускача от «классического» на литий-полимерных батареях в том, что есть функция «Принудительный пуск»возможен запуск мотора при полностью севшем аккумуляторе или же при отсутствие акб в автомобиле вовсе, что исключается как вариант при пускачах на встроенных батареях.
Основное правило какое? Верно! Перед работой обязательно стоит ознакомиться с инструкцией!
Об устройстве: корпус крепкий, дисплей защищен «зернистой» пленкой, провода с «крокодилами» несъемные — порадовал момент, что на морозе провода сохраняют эластичность (на данный момент проверялось лишь при минус 5°), крокодилы массивные и довольно тугие, на лицевой части устройства 3 кнопки — On/Off, Charge (Зарядка), BOOST (Кнопка Принудительного пуска).
Устройство оборудовано защитой от переполюсовки, короткого замыкания и от перегрева (видимо сделано специально от тех, кто будет пытаться завести «труп» до победного)

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Inspector Charger заряд не держит, то есть заряжается устройство НЕПОСРЕДСТВЕННО перед использованием, полного заряда 15.6 хватит часов на 5, затем напряжение пускача упадет до 12 Вольт и пуск мотора будет под вопросом, хотя…
Дорогой девайс? Да, дорогой. Этот самой мощный в линейке пускачей Inspector, ценник около 10000 рублей, это стоимость относительно хорошего пускача на литий-полимерных батареях, НО, конденсаторный пускач в определенных моментах выигрывает у конкурентовсрок службы больше 10 лет, вместо 3 лет у «классических» пускачей, за конденсатором нет необходимости следить и периодически подзаряжать встроенные батареи, разрешается перевозка любым транспортом, в том числе и воздушным, в отличии от взрывоопасных литиевых батареях, и температурный диапазон — конденсаторный пускач спокойно работает на морозе(!), а «классический» нет.

Добавлю ложку дегтя в бочку меда, кое какие моменты мне не понравились, а именно, из за конструкции клеммы несъемные с корпуса, зернистая защитная пленка на ярком солнце ухудшает обзор дисплея…
Кому девайс будет полезен? Первым делом это владельцам Вебасто и подобных установок в автомобиле, когда частенько требуется дать дополнительный заряд штатному акб. В целом, идея хорошая, на данный момент мы проверяли на легковых автомобилях — устройство запускало мотор, до грузовых пока что не добрался!
Как итог: да, с девайсом не идет в комплекте ударопрочный водонепроницаемый кейс, который к ценнику добавить лишние 3 тысячи рублей, нет ничего лишнего при устройстве, поэтому и ценник относительно адекватный с учетом начинки)
Ну как вам вещица?)

Источник

Суперконденсаторы вместо аккумулятора в автомобиле

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Понадобится

Этого хватит для первого опытного образца.

Первое испытание с запуском двигателя

Я купил 6 суперконденсаторов и плату балансовой защиты, бывают они продаются индивидуально под каждый ионистор, а бывает и цельная линейка под шесть штук.

Собрал все воедино.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Плата защиты исключает перезаряд суперконденсаторов напряжением выше 2,7В, поэтому использовать ее практически обязательно нужно, если включение элементов производится последовательно.

Далее я припаял клеммы и установил эту батарею на авто. Но предварительно ее необходимо зарядить небольшим током 5-7 А до рабочего напряжения. На это ушло 10-15 минут времени.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

После подключения автомобиль завелся без лишних сложностей, двигатель работал стабильно, напряжение в бортовой сети держалось на должном уровне.

В ходе этого эксперимента выяснились следующие плюсы и минут: батарея из ионисторов быстро разряжалась при выключенном зажигании, а именно где-то через 5-6 часов напряжение падало до 10 В. Это был минус, а плюс был в том, что даже при этом напряжении автомобиль все ещё заводился, так как для ионистора любое напряжение рабочее, в отличии от аккумулятора.

В итоге запустить двигатель по прошествии одних суток уже не представлялось возможным. И я решил исправить данный недостаток в следующей конструкции.

Схема

Вот схема второго прототипа батареи.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Оговорюсь сразу: солнечной панели и второго аккумулятора в ней нет. Тут также используется линейка из суперконденсаторов с балансной платой. Также добавлен контроллер заряда аккумулятора, пара переключателей, вольтметр и сам небольшой аккумулятор емкостью 7,5АЧ.

Работа устройства такова: перед запуском авто открываем капот и счелкаем верхний по схеме переключатель. Через мощный 50 Ваттный резистор сопротивлением 1 Ом, ионистор начинает заряжаться от аккумулятора. Заряжать напрямую без этого резистора нельзя, так как для аккумулятора это будет равносильно короткому замыканию.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

На все про все уходит 15 минут времени. Для меня это не критично. После этого можно заводить авто и ехать. Также парально резистору воткнут диод Шоттки. Он служит для зарядки аккумулятора после того как двигатель запущен.

А заряжается аккумуляторная батарея через контроллер зарядки.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Он нужен для того, чтобы каждый раз не щелкать переключатель включения, а один раз включить и ехать: встать у магазина и уйти на пару часов. И если ионистор начнет тянуть из аккумулятора ток, и разряжать его ниже 11,4 В, то контроллер зарядки тут же его отключит. Тем самым защитит батарею от полного разряда, что может ее погубить раньше срока.

Нижний по схеме переключатель служит для подключения вольтметра либо к ионисторам, либо к батарее.

Полностью рабочий экземпляр батареи на суперконденсаторах

Собрал всю схему в пластиковой коробке. Временно естественно, чисто покататься и испробовать новшество.

Источник

Пусковой конденсатор на авто

Почему применяется запуск двигателя 220 В через конденсатор?

Для начала определимся с терминологией. Конденсатор (лат. condensatio — «накопление») – это электронный компонент, хранящий электрический заряд и состоящий из двух близкорасположенных проводников (обычно пластин), разделенных диэлектрическим материалом. Пластины накапливают электрический заряд от источника питания. Одна из них накапливает положительный заряд, а другая – отрицательный.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Метод подключения двигателя через конденсатор – этот способ применяют для достижения мягкого пуска агрегата. На статоре однофазного движка с короткозамкнутым ротором размещают дополнительно к основной электрообмотке ещё одну. Две обмотки соотнесены между собой на угол 90. Одна из них является рабочей, её предназначение заставить работать мотор от сети 220 В, другая – вспомогательная, нужна для запуска.

Рассмотрим схемы подключения конденсаторов:

Как подобрать конденсаторы для запуска электродвигателя

Функция стабилизаторов сводится к тому, что они выполняют роль емкостных наполнителей энергии для выпрямителей фильтров стабилизаторов. Также они могут производить передачу сигнала между усилителями. Для запуска и работы в течение продолжительного количества времени, в системе переменного тока для асинхронных двигателей тоже используют конденсаторы. Время работы такой системы можно варьировать с помощью емкости выбранного конденсатора.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Первым и единственно главным параметром вышеупомянутого инструмента является емкость. Она зависит от площади активного подключения, который изолирован слоем диэлектрика. Этот слой практически невиден человеческому глазу, небольшое количество атомных слоев формируют ширину пленки.

Электролит используют в том случае, если нужно восстановить слой оксидной пленки. Для правильной работы аппарата нужно чтоб система была подключена к сети с переменным током в 220 В и имела четко выраженную полярность.

То есть конденсатор создан для того, чтоб накапливать, хранить и передавать определенное количество энергии. Так зачем они нужны, если можно подключить источник питания напрямую к двигателю. Все тут не так просто. Если подключить двигатель непосредственно к источнику питания, то в лучшем случае он не будет работать, в худшем сгорит.

Для того чтоб трехфазный мотор работал в однофазной цепи нужен аппарат, который сможет сдвинуть фазу на 90° на рабочем (третьем) выводе. Также конденсатор играет роль, такой себе катушки индуктивности, за счет того что через него проходит переменный ток — его скачки нивелируются за чет того что, перед работой, в конденсаторе отрицательные и положительные заряды равномерно накапливаются на пластинах, а потом передаются принимающему устройству.

Всего существует 3 основных вида конденсаторов:

Выбираем конденсаторы

Существует формула, по которой емкость можно рассчитать. Правда, для схемы звезда и треугольника она отличается коэффициентом. Для схемы звезда формула вот такая:

С=2800*I/U, где I – это ток, который можно замерить в питающем проводе клещами, U – это напряжение однофазной сети – 220 В.

Формула для треугольника:

Здесь загвоздка может быть только в определение силы тока, просто клещей может не оказаться под рукой, поэтому предлагаем упрощенный вариант формулы:

С=66*Р, где Р – это мощность электродвигателя, которая наносится на шильдик мотора или в его паспорте. По сути, получается так, что емкость рабочего конденсатора в размере 7 мкФ должно хватить на 0,1 кВт мощности двигателя. Обычно электрики берут именно это соотношение, когда перед ними ставиться вопрос, как подключить асинхронный двигатель с 380 на 220 В

И еще один момент – конденсатор контролирует силу тока, поэтому так важно правильно подобрать его емкость. И самое главное в подключении двигателя добиться того, чтобы значение тока при эксплуатации электродвигателя не поднималось выше номинальной величины

Что касается пускового конденсатора, то его обязательно устанавливают в схему, если при пуске мотора действует хотя бы минимальная нагрузка. Включается он обычно буквально на пару секунд, пока ротор не наберет свои обороты. После чего он просто отключается. Если по каким-то причинам пусковой конденсатор не отключится, то произойдет перекос фаз, и двигатель перегреется.

Есть еще один показатель, на который необходимо обратить внимание при выборе. Это напряжение

Правило здесь одно: напряжение конденсатора должно быть больше напряжения в однофазной сети на 1,5.

Как рассчитать емкость

Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в 220В, зависит от самой схемы. Для этого существуют специальные формулы.

Cр = 2800•I/U, где Ср – это емкость, I – сила тока, U – напряжение. Если производится подсоединение треугольником, то используется та же формула, только коэффициент 2800 меняется на 4800.

Хотелось бы обратить ваше внимание на тот факт, что сила тока (I) на бирке мотора не указывается, поэтому ее надо будет рассчитать по вот этой формуле:

I = P/(1.73•U•n•cosф), где Р- это мощность электрического двигателя, n – КПД агрегата, cosф – коэффициент мощности, 1,73 – это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Так как чаще всего подключение трехфазного двигателя к однофазной сети 220В производится по треугольнику, то емкость конденсатора (рабочего) можно подсчитать по более простой формуле:

C = 70•Pн, здесь Рн – это номинальная мощность агрегата, измеряемая в киловаттах и обозначаемая на бирке прибора. Если разобраться в этой формуле, то можно понять, что существует достаточно простое соотношение: 7 мкФ на 100 Вт. К примеру, если устанавливается мотор мощностью 1 кВт, то для него необходим конденсатор на 70 мкФ.

Как определить, точно ли подобран конденсатор? Это можно проверить только в рабочем режиме.

Даже расчет может привести к неправильному выбору, ведь условия эксплуатации мотора будут влиять на его работу. Поэтому рекомендуется начинать подбор с низких величин, и при необходимости наращивать показатели до необходимых (номинальных).

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя

Хотелось бы обратить ваше внимание на то, что пусковая емкость и емкость пускового конденсатора – это не одно и то же. Первая величина – это сумма емкостей рабочего и пускового конденсаторов

В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым. Даже расчет является процессом неточным.

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно)

К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Схемы подключения

Варианты подключения двигателя через конденсатор:

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто
Схема подключения пускового конденсатора

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто
Соединения, центробежный выключатель на валу ротора

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто
Некоторые элементы

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто
Варианты схемы подключения конденсаторов

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Комбинированная схема с двумя конденсаторами

Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто
Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно

Схема подключения электродвигателя 380 на 220 вольт с конденсатором

Есть еще один вариант подключения электродвигателя мощность в 380 Вольт, который приходит в движение без нагрузки. Для этого также необходим конденсатор в рабочем состоянии.

Один конец подключается к нулю, а второй — к выходу треугольника с порядковым номером три. Чтобы изменить направление вращения электромотора, стоит подключить его к фазе, а не к нулю.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Схема подключения электродвигателя 220 вольт через конденсаторы

В случае когда мощность двигателя более 1,5 Киловатта или он при старте работает сразу с нагрузкой, вместе с рабочим конденсатором необходимо параллельно установить и пусковой. Он служит увеличению пускового момента и включается всего на несколько секунд во время старта. Для удобства он подключается с кнопкой, а все устройство — от электропитания через тумблер или кнопку с двумя позициями, которая имеет два фиксированных положения. Для того чтобы запустить такой электромотор, необходимо все подключить через кнопку (тумблер) и держать кнопку старта, пока он не запустится. Когда запустился – просто отпускаем кнопку и пружина размыкает контакты, отключая стартер

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Специфика заключается в том, что асинхронные двигатели изначально предназначаются для подключения к сети с тремя фазами в 380 В или 220 В.

Р = 1,73 * 220 В * 2,0 * 0,67 = 510 (Вт) расчет для 220 В

Р = 1,73 * 380 * 1,16 * 0,67 =510,9 (Вт) расчет для 380 В

По формуле становится понятно, что электрическая мощность превосходит механическую. Это необходимый запас для компенсации потерь мощности при старте — создании вращающегося момента магнитного поля.

Существуют два типа обмотки — звездой и треугольником. По информации на бирке мотора можно определить какая система в нем использована.

Схема подключения электродвигателя на 220В через конденсатор

Подключение электродвигателя к однофазной сети – это ситуация, которая встречается достаточно часто. Особенно такое подключение требуется на загородных участках, когда трехфазные электродвигатели используются под какие-то приспособления. К примеру, для изготовления наждака или самодельного сверлильного аппарата. Кстати, мотор стиральной машины через конденсатор производится. Но как это сделать правильно? Необходима схема подключения электродвигателя на 220В через конденсатор. Давайте разбираться в ней.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Начнем с того, что существует две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник. Оба вида подключения создают условия, при которых в обмотках статора двигателя попеременно проходит ток. Он создает внутри вращающееся магнитное поле, которое действует на ротор, заставляя его вращаться. Если подключается трехфазный электродвигатель в однофазную сеть, то вот этот вращающийся момент не создается. Что делать? Вариантов несколько, но чаще всего электрики устанавливают в схему конденсатор.

Что при этом получается?

Необходимо отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные виды. У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. При этом обязательно указывается величина напряжения – 127/220 или 220/380В. Меньший показатель предназначен для схемы треугольник, больший для звезды. На картинке ниже показано обозначение.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Обратите внимание в рисунке на нижнюю бирку (Б). Она говорит о том, что двигатель можно подключить только через звезду

С этим придется смириться и получить аппарат с низкой мощностью. Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, после чего провести подключение по треугольнику.

И еще один очень важный момент. Если вы устанавливаете в однофазную сеть электродвигатель с напряжением 127/220 вольт, то понятно, что к сети напряжением 220В можно подключиться через звезду. Потери мощности гарантированы. Но сделать в данном случае ничего нельзя. Если будет произведено подключение этого прибора через треугольник – мотор просто сгорит. Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Схема подключения однофазного двигателя через конденсатор

Во втором случае, для моторов с рабочим конденсатором, дополнительная обмотка подключена через конденсатор постоянно.

По информации на бирке мотора можно определить какая система в нем использована. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок.

Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность. Расчёт емкости производится исходя из рабочего напряжения и тока, или паспортной мощности мотора. Кратковременным подключением пускового конденсатора на валу двигателя создается мощный стартовый вращающий момент, время запуска сокращается в разы.

Из-за сложности формул расчёта принято выбирать емкости, исходя из приведённых выше пропорций. Расчет емкости конденсатора мотора Существует сложная формула, с помощью которой высчитывают необходимую точную емкость конденсатора. В этих двигателях, рабочая и пусковая — одинаковые обмотки по конструкции трехфазных обмоток. После списания прибора в утиль в большинстве случаев электродвигатели сохраняют работоспособность и могут еще довольно долго послужить в виде самодельных электронасосов, точил, станков, вентиляторов и газонокосилок.

Статья по теме: Виды электромонтажных работ по смете

Заключение

В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Это схема обмотки звездой Красные стрелки — это распределение напряжения в обмотках мотора, говорит о том, что на одной обмотке распределяется напряжение единичной фазы в В, а двух других — линейного напряжения В.

После запуска двигателя, конденсаторы содержат определенное количество заряда, потому прикасаться к проводникам запрещается. В этой обмотке которая еще имеет название рабочей магнитный поток изменяется с такой частотой, с которой протекает по обмотке ток. Вычислить, какие провода к какой обмотке относятся, можно путем измерения сопротивления. Обмотка, у которой сопротивление меньше — есть рабочая. В статоре однофазного электродвигателя находится однофазная обмотка, что отличает его от трехфазного.

Двигатели с высотой вращения более 90 мм представлены в чугунном исполнении. Такая схема исключает блок электроники, а следовательно — мотор сразу же с момента старта, будет работать на полную мощность — на максимальных оборотах, при запуске буквально срываясь с силой от пускового электротока, который вызывает искры в коллекторе; существуют электромоторы с двумя скоростями. Это необходимый запас для компенсации потерь мощности при старте — создании вращающегося момента магнитного поля. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле в холодильниках.

Принцип работы двигателя

Чтобы понять, как работают электродвигатели асинхронные трехфазные, необходимо провести один несложный эксперимент. Для этого вам понадобиться обычный магнит подковообразного типа и медный стержень. При этом магнит надо хорошо закрепить к рукоятке, с помощью которой его можно крутить на одном месте вокруг своей оси. Медный стержень закрепляется в подшипниках и устанавливается в пространство между концами (полюсами) магнита-подковы. То есть, стержень оказывается как бы внутри магнита, а, точнее сказать, внутри его плоскости вращении.

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на автоПринцип работы трехфазного асинхронного двигателя

Теперь надо просто вращать магнитное устройство за ручку. Лучше по часовой стрелке. Так как между полюсами есть магнитное поле, то оно также будет вращаться. При этом поле будет пересекать или рассекать своими силовыми линиями медный стержень-цилиндр. И тут включается закон электромагнитной индукции. То есть, внутри медного стержня начнут возникать вихревые токи. Они, в свою очередь, начнут образовывать свое собственное магнитное поле, которое будет взаимодействовать с основным магнитным полем.

При этом стержень начнет вращаться в ту же сторону, что и магнит. И вот тут возникает один момент, который также лежит в принципе работы электродвигателя. О нем было уже упомянуто. Если скорость вращения стержня будет такое же, как у магнита, то их силовые линии пересекаться не будут. То есть, вращения не будет в виду отсутствия вихревых токов.

И еще пару нюансов:

Пусковой конденсатор на авто. Смотреть фото Пусковой конденсатор на авто. Смотреть картинку Пусковой конденсатор на авто. Картинка про Пусковой конденсатор на авто. Фото Пусковой конденсатор на авто

Кстати, определить величину скольжения несложно, для этого необходимо воспользоваться формулой:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *