Ссср машина на водороде
Видео: Как создали «москвич», работающий на воде, но не запустили в производство
В 1976 году в Харькове был создан автомобиль с работающим на воде двигателем.
Над советскими автомобилями очень часто иронизируют. Дизайн некоторых из них иногда кажется слишком примитивным. Все дело в том, что большинство не разбирающихся в автомобилях людей судит о качестве машин только по внешнему виду. Другая проблема советского автопрома состоит в том, что далеко не все инновационные проекты были реализованы.
В СССР было очень много прорывных технологий. Некоторые проекты получались весьма абсурдными (как поезд на резиновых колесах, о котором мы рассказывали), а некоторые могли бы перевернуть всю индустрию, будь они реализованы. Во времена Советского Союза вопрос о создании электромобилей еще не поднимался, а проблема необходимости альтернативы бензиновым двигателям уже существовала. Вода — ресурс более доступный и дешевый, чем нефть. Двигатель, работающий на воде, стал бы мировым открытием.
Сразу после Второй мировой войны в харьковском институте машиностроения специалисты начали работу над созданием альтернативного топлива. Советским ученым удалось добиться прогресса в этой области, и уже в 1976 году первый водородный двигатель был установлен на «москвич». Вода в двигателе проходила через определенные химические элементы и разделялась на водород и кислород. Что интересно, «москвич» сохранил возможность передвигаться и на бензине.
Автомобили, работающие на воде, были бы гораздо менее вредными для окружающей среды. Такое инновационное изобретение получило бы мировую известность, но по неизвестным причинам работа над водородным двигателем прекратилась (а немцы эту задумку все же реализовали). К сожалению, вместо того, чтобы перевернуть всю индустрию машиностроения двигателем нового поколения, все чертежи были отложены в ящик, а все работы приостановлены. «Москвич», работающий на воде, так и не покинул пределы Харькова.
К сожалению, такие проекты не были редкостью, однажды мы рассказывали, какие полезные открытия ученых так и не нашли достойного применения.
Москвич-412 на водородном топливе: 1976-й год
2015-й год. Японская компания Toyota проводит мощную пиар-кампанию по продвижению своей первой серийной водородной модели Mirai. Но, как вы уже знаете на примере электромобиля ВАЗ-2801, все новое — это лишь хорошо забытое старое. Дело в том, что еще в 70-х годах прошлого века в СССР различными организациями были созданы и испытаны опытные легковые автомобили ВАЗ «Жигули», АЗЛК «Москвич», ГАЗ-24 «Волга» и ГАЗ-69, грузовые ЗИЛ-130, микроавтобусы РАФ и УАЗ, работающие на водороде и бензоводородных смесях. Об одном из них я расскажу чуть подробней.
В 1976-м году специалистами Института проблем машиностроения АН УССР в Харькове был построен экспериментальный автомобиль Москвич-412 с силовым агрегатом, работающем на водороде.
Кроме привычного бензобака, на советский седан установили мини-реактор, заправленный энергоаккумулирующими веществами (ЭАВ) — катализаторами, в основе которых лежат окислы различных металлов. Проходя через этот реактор, вода расщепляется на кислород и водород, который потом и сгорает в цилиндрах привычного ДВС. Примечательно, что топливную систему для подачи водорода установили параллельно со стандартной бензиновой.
В реактор одновременно попадают вода и катализатор в количестве, зависящим от требуемой мощности мотора. Скоростью реакции управляет водитель, нажимая на педаль газа.
Чем же так привлекателен водород в качестве топлива для автомобилей? Прежде всего, в единице веса водород содержит почти в три раза больше тепловой энергии, чем все известные ископаемые топлива. Водород самый легкий элемент: даже в жидком состоянии он примерно в 14 раз легче воды. Этот элемент чрезвычайно быстро смешивается с другими газами, и в частности с воздухом атмосферы. Прекрасно горит в ней, и при этом процессе образуются пары дистиллированной воды, что просто замечательно с точки зрения экологии. К тому же запасы водорода на земле практически безграничны.
Ну и самое интересное — познавательное документальное видео о водородном «Москвиче-412»:
Также в моем блоге можно почитать о советском электромобиле ВАЗ-2801, узнать из чего состоит батарея для Tesla Model S и оценить новый электромобиль от Porsche.
Комментарии 743
ну как бе зог допустил электромобили с подзарядкой с домашней розетки, не?
За розетку ты зогу платишь. И не переживай, зог без денег не останется 😉
Это видео не открывается (((
Какое название у ролика чтоб посмотреть?
дотянулась рука буржуев!
Выгодно не выгодно, фиг его знает, если производить его(водород), то наверное пока не выгодно, если непосредственно весь процесс наладить, как в москвиче, наверное смысл есть.
А нефть ни куда не денется, пластик, химия, да еще куча чего, сей час без этого ни как.
Реактивы, которые делают водород из воды очень скоро отравляются, а стоят они недешево. Поэтому и не выгодно в сравнении с традиционным ДВС
Запасы водорода безграничны? Вообще-то в чистом виде водород в природе не встречается вообще.
Можно подумать что 95-й бензин в чистом виде встречается, я его даже на на всех заправках нахожу
Производство бензина дешевле чем производство химически чистого водорода.
Да ни кто и не спорит
Производство бензина дешевле чем производство химически чистого водорода.
не сказал бы. водород можно получить обычным электролизом, в то время как бензин — продукт нефтехимической промышленности, и то с присадками! и потом водород не должен быть химически чистым. А потом: электролиз производит только кислород и водород, там нет грязи никакой. А бензин получают расщеплением нефти, добавкой в бензин присадок от детонации. Водород надо сжать только. Может, в этом и проблема
Проблема еще в том что при электролизе воды затрачивается значительно больше электричества чем мы можем получить после химической реакции в топливных ячейках. Т.е. мы генерируем электричество, 10% теряем на его транспортировке, 25-30% на електролизе, что-то на сжатии водорода, 10-20% на топливных ячейках, и 10% на электродвигателе. Энергетический баланс такой системы можете прикинуть сами. Но это еще не все потери, так, навскидку.
Водород дОрог (в сравнении с продуктами перегонки нефти). Это надо принять. А носятся все с ним только из-за мнимой экологичности — пар из выхлопной трубы — розовая мечта всех «зеленых». А то что для этого в три раза больше должны дымить электростанции никого не волнует — «это ж в соседнем городе».
УПД. Водородный транспорт имеет смысл только в городах с химическими производствами где водород — побочный продукт. Так в Европах вполне успешно переводят на водород коммунальный автотранспорт. Но ездить на водороде полученном путем электролиза — это нонсенс.
ну допустим у вас есть модифицированные бактерии, которые делают водород под воздействием солнечного света. и часть этого водорода сжигается, чтоб питать компрессорную станцию. Можно делать что-то типа кассет, которые будут ставиться в автомобиль. Сжиженный конечно нельзя, его тупо нечем охладить! А вот сжатый можно. Экспериментально его делают лазерным охлаждением.
Это все если «гипотетически». А если брать в руки калькулятор обязательно получится какая-то фигня. Бактерий чем кормить? Какова эффективность процесса? — не придется ли нам для получения литра жидкого водорода отдать под такую ферму 50га пахотных земель и ждать полтора месяца? )) Интенсивность солнечного света (солнечная постоянная) — ок. 1кВт/м.кв. Это при ясном небе в час летного солнцестояния, на экваторе. На наших широтах надо делить вдвое, минимум. Никакой биологический организм не сможет усвоить и 10% поступившего света, т.е. КПД процесса будет крайне низким.
Кассеты. Хм. А под каким давлением будет хранится водород в этих кассетах? Из какого материала их делать? — да, еще одна проблема — у водорода настолько маленькая молекула что он просачивается через кристаллическую решетку металлов и вызывает их ухрупчение.
Можно конечно хранить водород в гидратах металлов и получать сразу на борту автомобиля — такие проекты были. Но вес заправки на 1 км совсем не радует.
Если интересует эта тема — я бы порекомендовал книгу «современный экономичный автомобиль» Мацкерле, там последняя треть посвящена «альтернативке» и такие вопросы разобраны довольно детально. Самое смешное что книга 1987 года и диву даешься насколько мало с той поры изменилось.
ничем не кормить. фотопроцесс. говном кормить…
Это все если «гипотетически». А если брать в руки калькулятор обязательно получится какая-то фигня. Бактерий чем кормить? Какова эффективность процесса? — не придется ли нам для получения литра жидкого водорода отдать под такую ферму 50га пахотных земель и ждать полтора месяца? )) Интенсивность солнечного света (солнечная постоянная) — ок. 1кВт/м.кв. Это при ясном небе в час летного солнцестояния, на экваторе. На наших широтах надо делить вдвое, минимум. Никакой биологический организм не сможет усвоить и 10% поступившего света, т.е. КПД процесса будет крайне низким.
Кассеты. Хм. А под каким давлением будет хранится водород в этих кассетах? Из какого материала их делать? — да, еще одна проблема — у водорода настолько маленькая молекула что он просачивается через кристаллическую решетку металлов и вызывает их ухрупчение.
Можно конечно хранить водород в гидратах металлов и получать сразу на борту автомобиля — такие проекты были. Но вес заправки на 1 км совсем не радует.
Если интересует эта тема — я бы порекомендовал книгу «современный экономичный автомобиль» Мацкерле, там последняя треть посвящена «альтернативке» и такие вопросы разобраны довольно детально. Самое смешное что книга 1987 года и диву даешься насколько мало с той поры изменилось.
именно поэтому и ездим на бензине, потому, что тут куча исследований и доводки промышленных образцов нужно. и АЗС, и сам транспорт, вообще вся инфраструктура. Никто не мешает купить лабораторный водород в баллоне. Но это непрактично и пока что дорого
Еще в Советском Союзе харьковские разработчики и инженеры совершили прорыв, запустив на дороги транспортные средства, которые ездили на водороде, а не на бензине. Сегодня водородный двигатель активно тестируют в украинской лаборатории
Харьковские разработчики Института проблем машиностроения им. А. Н. Подгорного начали разрабатывать водородные двигатели еще с 70-х годов. Тогда по улицам Харькова начали ездить автомобили на воде. Их было несколько.
Сразу после Второй мировой войны в харьковском институте машиностроения специалисты начали работу над созданием альтернативного топлива. Тогда удалось добиться прогресса в этой области, и уже в 1976 году первый водородный двигатель был установлен на «москвич». Вода в двигателе проходила через определенные химические элементы и разделялась на водород и кислород. Что интересно, «Москвич» сохранил возможность передвигаться и на бензине.
Кроме привычного бензобака, на «Москвич-412» установили мини-реактор, заправленный энергоаккумулирующими веществами (ЭАВ) — катализаторами, в основе которых лежат оксиды различных металлов. Проходя через этот реактор, вода расщеплялась на кислород и водород, который потом и сгорал в цилиндрах привычного ДВС. Скоростью реакции управлял водитель, нажимая на педаль газа.Примечательно, что топливную систему для подачи водорода установили параллельно со стандартной бензиновой.
«В бак вместо бензина заливали воду. Специальный механизм подавал эту воду в реактор, где вырабатывался водород. И он питал двигатель», – рассказывает Антон Левтеров, старший научный сотрудник отдела водородной энергетики Института проблем машиностроения.
Волга ГАЗ-24 на водороде
Опытная эксплуатация бензоводородных автомобилей «Волга», осуществлявшаяся в Харькове с 1980 года, показала перспективность перевода части городского автотранспорта на бензоводородные смеси с содержанием водорода около 5% по весу. При этом резко снижается токсичность выбросов, эксплуатационный расход бензина уменьшается на 35‑40 процентов, а эксплуатационная экономичность повышается на 20‑25%.
В 1986 году Минавтопромом СССР было принято решение о выпуске и последующей эксплуатации в городах СССР опытной партии городских микроавтобусов РАФ (200 штук), работающих на бензоводородных смесях. Однако это решение из‑за начавшихся политических процессов не было выполнено.
Теперь харьковские разработчики хотят продолжить эксперимент и активно исследуют водородную энергетику.
brndk
«Историй» много
Осенью и зимой 1941г. в ленинградских полках аэростатов заграждения из-за нехватки бензина почти все автомобили стояли. Но легковушка, на заднем сидении которой лежали баллоны с водородом, ездила исправно.
В 1942г. необычный автомобиль с двигателем, работавшим на водороде, демонстрировался на выставке техники, приспособленной к условиям блокады (об этом 17 января 1942г. писала газета «Ленинградская правда»). Хотя двигатель несколько часов работал в закрытом помещении, посетители выставки не почувствовали ни дыма, ни гари, ни необычных запахов. Отработанные газы — обыкновенный пар — не загрязняли воздух. Позднее, на выставке автомобилей, работающих на заменителях бензина, эту машину демонстрировали командующему Ленинградским фронтом генерал-полковнику Л.А.Говорову, который одобрил идею ее создания.
Схема, предложенная изобретателем, была предельно проста. Отработанный водород из матерчатого газгольдера объемом 125 м3 по дюймовому шлангу подводился к всасывающему коллектору двигателя ГАЗ-АА через технологическую пробку. Минуя карбюратор, газ поступал в рабочие цилиндры. Дозировка водорода и воздуха обеспечивалась дроссельной заслонкой или педалью акселератора. Моторист лебедки (он же водитель грузовика) управлял работой двигателя теми же способами, как и при использовании бензина.
Во время первых опытов сгорели два аэростата, взорвался газгольдер, сам Борис Исаакович получил контузию. После этого для безопасной эксплуатации воздушно-водородной «гремучей смеси» он придумал специальный водяной затвор, исключавший воспламенение смеси при вспышке во всасывающей трубе двигателя.
Стендовые испытания двигателя, проработавшего без остановки 200ч., показали, что его износ оказался ниже норм, установленных при работе на бензине, двигатель не потерял мощности, в смазочном масле не нашли вредных примесей, а в камерах сгорания — и следов нагара.
Особому испытанию подвергалась надежность гидрозатвора, от которого зависела безопасность. Многократные испытания действия гидрозатвора оказались успешными.
Как в блокадном Ленинграде техник-самородок создал первый водородный двигатель для автомобиля
Блокадный Ленинград был одной из самых сложных точек на карте боевых действий Восточного фронта. В условиях тотальной осады немецкими войсками обеспечивать оборону города было чрезвычайно сложно. Одним из самых действенных способов защищать ленинградское небо от вражеских бомбардировок были аэростаты. Однако отсутствие снабжения едва не вывело их из строя. Ситуацию спас талантливый лейтенант, чье изобретение опередило время на десятилетия вперед.
Аэростаты были довольно эффективным способом защиты от бомбардировок, однако и они имели недостатки. Так, срок их непрерывного пребывания в небе обычно не превышал трех недель. Аэростаты теряли водород, который выходил наружу. И просто снижались, теряя высоту. И для того, чтобы вновь поднять «защитника» в небо, необходимо было сначала посадить его на землю и наполнить новым водородом. Заправка осуществлялась посредством использования лебедок, работающих на бензине. Однако столь необходимое топливо закончилось уже в конце 1941 года, и Ленинграду грозила потеря защиты его неба.
Выход нашел 32-летний военный техник в звании младшего лейтенанта Борис Шелищ. Его мобилизовали уже на вторые сутки после вторжения войск Германии на территорию СССР. Занимался младший лейтенант Шелищ ремонтом аэростатных лебедок 3-го полка 2-го корпуса противовоздушной обороны. Будучи талантливым самоучкой, еще в довоенное время он сумел собрать легковую машину, которая служила ему средством передвижения между аэростатными постами для технического руководства.
И в тяжелые дни, когда в Ленинграде закончился бензин, Борис Шелищ предложил альтернативу – использовать приспособленные к работе с аэростатами лебедки от лифта, работающие от электричества. Идея была неплохая, однако на пути встала новая преграда: довольно скоро город остался и без электроэнергии.
Младший лейтенант Борис Исаакович Шелищ.
Попытка обратиться к механическому труду также оказалась практически невыполнимой. Дело в том, что для такой работы требовалась сила более десяти мужчин, но в условиях повсеместной мобилизации на фронт персонала на аэростатных постах осталось до 5 человек, и большинство из них были девушки.
Но Шелищ не сдавался, пытаясь найти выход из практически отчаянной ситуации. Находясь в увольнении у себя дома, инженер решил развлечь себя чтением. Выбор пал на роман «Таинственный остров» Жюля Верна. Разгадка проблемы с аэростатами была найдена в тот же момент – 11 глава произведения содержала спор главных героев, рассуждавших о том, какое топливо будут использовать в будущем. По мнению персонажа Сайреса Смита, который был инженером, после иссякания месторождений угля, мир перейдет на воду, точнее ее составляющие – кислород и водород.
Решение обратиться к водороду вместо бензина требовало взвешенных раздумий, учитывая печальные эпизоды прошлого, связанные с подобными опытами. Шелищ был хорошо знаком с историей гордости воздухоплавания Германии дирижабля «Гинденбург». Катастрофа, которая была вызвана именно возгоранием водорода, стала причиной гибели десятков человек и активно освещалась в советской прессе. Этот трагический случай инициировал свертывание опытов с опасным газом и положил конец эре дирижаблей.
Печальная судьба самого известного дирижабля доказала опасность использования водорода.
Первые эксперименты прошли с переменным успехом.
Но останавливаться на полпути талантливый лейтенант не собирался. Сразу после выздоровления он стал думать над решением возникшей проблемы. Им стал гидрозатвор, который служил разделителем между двигателем и огнем. Водород проходил своеобразную водную стену, и взрывы удавалось предотвратить. Проект Шелища был предложен чиновникам из руководства, и те дали добро на разработку.
На испытания собрались вся верхушка Ленинградской службы ПВО. Борис Шелищ провел процедуру запуска в присутствии руководства. Двигатель завелся мгновенно, вопреки 30-градусному морозу, и работал без перебоев. Все последующие эксперименты также прошли успешно. Впечатленное командование предписало в 10-дневный срок перевести все аэростатные лебедки на водород. Однако ресурсов для этого у разработчиков попросту не было.
Шелищ вновь взялся найти решения. В своих поисках он оказался на Балтийском заводе и поначалу ничего не нашел. Однако затем, зайдя на склад, наткнулся на огромное количество использованных огнетушителей. И они стали идеальным решением. Тем более, что в условиях постоянных бомбардировок «запасы» пустых огнетушителей непрерывно пополнялись.
Для того, чтобы уложиться в срок, разработчики работали несколькими бригадами едва ли не круглосуточно. Счет созданных и установленных единиц нужного оборудования шел на сотни. Но ленинградцы все-таки успели. И аэростаты вновь взмыли в небо, защищая блокадный город от вражеских бомбардировок непроходимой стеной.
Благодаря изобретению талантливого лейтенанта, аэростаты вновь защищали город.
Борис Шелищ вместе со своим детищем посетил ряд выставок военных изобретений. За свою деятельность талантливого лейтенанта представили к награде орденом Красной Звезды. А само изобретение хотели также наградить Сталинской премией. Однако не случилось – тогда работа не прошла по конкурсу.
К началу 1942 года слава изобретения младшего лейтенанта Шелища дошла до Ставки. Был выдан приказ о переезде техника в Москву для выполнения задания: обеспечить перевод на водород 300 двигателей в частях аэростатного заграждения столицы. Поставленная задача была выполнена. В ответ Шелищу предложили переехать в Москву, но лейтенант отказался. Он считал, что если останется в столице, это будет выглядеть как бегство с реального поля боя, которое продолжало бушевать на ленинградской земле. Техник вернулся в родной город и продолжил заниматься своим делом – осуществлять технический контроль аэростатных заграждений.
Наградной лист Бориса Шелища.
Аэростаты на двигателях младшего лейтенанта Бориса Шелища успешно использовали всю войну. Но победа положила конец этой эре: причиной стало исчезновение топлива для двигателя – «бросового» водорода. Однако списанные изобретения ленинградского техника-самородка продолжали применять в работе колхозов и совхозов.
Прогрессивное изобретение было забыто после войны.
И тут ветераны Ленинградского фронта прислали опровержение, вспомнив историю изобретения младшего лейтенанта Бориса Шелища, которое спасало блокадный город ещё с 1941 года. Так что действительно, в вопросе создания водородного двигателя СССР перегнал Америку, но сделал это десятилетия назад.