что хорошо поглощает тепло
Поглощательная способность материалов
Тепло распространяется или переносится от одной точки материала к другой или между телами тремя способами. Два из них — теплопроводность и конвекция — используются всеми традиционными системами отопления. Третий способ — радиация — в равной степени важен в успешном применении солнечной энергии для отопления и охлаждения помещений.
Тепло есть энергия и может принимать форму длинноволновой электромагнитной радиации. Любая радиация распространяется по прямой с одной и той же скоростью (300 000 км/с), но имеет разные длины волн. Количество энергии, переданной посредством радиации, обратно пропорционально длине ее волны (т.е. чем короче длина волны, тем выше энергосодержание). Лучистая теплота представляет собой длинноволновую низкоэнергетическую форму радиации. При падении радиации на какое-либо тело она отражается, пропускается или поглощается этим телом. Каждый материал отражает, пропускает или поглощает падающую радиацию по-разному в зависимости от его абсолютной температуры, физических и химических характеристик и длины волны падающей радиации. Например, стекло пропускает большую часть падающего на него видимого света, но очень мало инфракрасного излучения.
Каждый материал имеет численные параметры, характеризующие отражательную, пропускательную и поглощательную способность этого материала в определенном диапазоне температур и для определенного участка электромагнитного спектра. Сумма коэффициентов поглощения, отражения и пропускания материала равна 1, что указывает на 100%-ный учет падающей радиации. Для большинства светонепроницаемых твердых материалов пропускаемая энергия фактически равна нулю, так что сумма коэффициентов поглощения и отражения считается равной 1.
Лучистая энергия после поглощения превращается в тепло. Это тепло может быть передано дальше, излучено обратно или излучено в виде длинноволновой радиации из материала. Коэффициент излучения ε материала является численным показателем способности этого материала пропускать длинноволновое излучение. Коэффициент излучения представляет собой отношение излучаемой мощности материала к излучаемой мощности теоретического абсолютно черного тела (т.е. для абсолютно черного тела ε=1 ; для черной краски ε=0,95 ; для селективного черного покрытия ε=0,05 ). Эти данные имеют большое значение, т.к. указывают на относительные рабочие характеристики разных материалов.
Например, кирпичная кладка и бетон, которые имеют коэффициенты излучения около 0,9, являются лучшими радиаторами тепла, чем латунь или алюминий, которые в лучшем случае имеют коэффициент излучения 0,22. Асфальтовое покрытие, коэффициент поглощения которого более 0,9, преобразует намного больше падающей солнечной радиации в тепло, чем песок (коэффициент поглощения 0,6 0,75); это подтвердит любой, кому приходилось проходить босиком от автостоянки до пляжа.
Отношение между коэффициентом поглощения коротковолновой радиации и коэффициентом излучения длинноволновой радиации каким-либо материалом имеет особое значение для проектировщика солнечного коллектора. Материалы с высокими отношениями, называемые селективные пленки, можно использовать для покрытия поверхностей пластин солнечных коллекторов, так что поглощаться будет максимальное количество энергии, а теряться в результате излучения или вторичного излучения будет минимальное количество.
В нижеследующих таблицах приводятся коэффициенты поглощения и излучения различных материалов. За исключением особо помеченных, данные относятся к коротковолновому поглощению и длинноволновому излучению. Температура материала принимается в пределах от —17,8 до 100°C. Материалы даны по пяти категориям, в каждой из которых содержатся материалы со сходными характеристиками.
Выяснено, какие материалы наиболее эффективны для преобразования тепла
Vera Kratochvil/Public Domain Pictures
Новосибирские химики выяснили, какие материалы будут эффективны для адсорбционного преобразования тепла в различных регионах России. Эта технология может сделать более доступной энергию альтернативных источников, например, солнечную. Статья ученых опубликована в журнале Applied Sciences. Исследование выполнено при поддержке Президентской программы исследовательских проектов Российского научного фонда (РНФ).
Чтобы подогреть летом на даче воду для душа или сохранить свежими продукты в жаркий день, не обязательно использовать электричество или природный газ. Для бытовых нужд подойдет адсорбционный преобразователь тепла (АПТ). Такие приборы работают благодаря способности пористых материалов-сорбентов взаимодействовать с парами жидкостей-сорбтивов. Насыщаясь паром, сорбент выделяет тепло и, наоборот, поглощает его, когда отдает пар.
Свойства сорбентов имеют угли, цеолиты, силикагели. Иногда их заменяют другими материалами: композитами, металлоорганическими каркасами, алюмофосфатами. Основные составляющие АПТ — реактор с поглотителем-сорбентом и два резервуара с жидкостью-сорбтивом. Один резервуар служит испарителем, второй — конденсатором. Чтобы запасти энергию, сорбент сушат на солнце. Когда необходимо получить тепло (например, ночью), между резервуаром-испарителем и реактором открывают кран, так что пары сорбтива поступают на сорбент. Сорбент поглощает их, происходит разогрев реактора, и запасенное за день тепло можно использовать. На следующий день сорбент вновь сушат с помощью доступной солнечной энергии, и пары из него поступают в конденсатор. Это пример суточного цикла работы АПТ, но возможен и сезонный цикл, когда энергию запасают все лето и используют зимой. Кроме того, преобразователь тепла может служить источником холода: когда материал-сорбент поглощает пары сорбтива, резервуар-испаритель сильно охлаждается. Этот эффект можно использовать для охлаждения продуктов или кондиционирования помещений.
Высушить сорбент можно не только с помощью солнечной энергии. Подойдет любое тепло, например, от работающего двигателя, отработанного промышленного газа, от выхлопных газов автомобилей. Обычно такое тепло рассеивается в окружающей среде без всякой пользы. Но хотя солнечный свет — не единственный источник энергии для АПТ, климатические условия, тем не менее, важны при выборе пары «сорбент-сорбтив». Материал, хорошо накапливающий и отдающий тепло в одной климатической зоне, может оказаться совершенно неэффективным при других температурах. Чтобы выяснить, какие материалы и жидкости подойдут для работы АПТ в российских климатических условиях, новосибирские химики в сотрудничестве с итальянскими коллегами проанализировали около 40 пар «сорбент-сорбтив». Исследователи оценивали возможность использовать их в циклах обогрева, охлаждения и запасания тепла в условиях семи локаций (Астрахань, Москва, Владивосток, Омск, Архангельск, Якутск, Оймякон).
Для каждой локации по данным базы METEONORM рассчитали средние температуры дня и ночи для каждого месяца года. Используя эти данные в качестве параметров, авторы определили для каждого цикла (охлаждение, обогрев и запасание тепла) так называемый интервал адсорбционного потенциала Поляни. Его граничные значения позволяют оценить, какое количество сорбтива выбранный сорбент будет обменивать за нужный рабочий цикл. Чем больше сорбтива сорбент может обменять в заданных условиях, тем выше эффективность АПТ. Расчеты помогли подобрать наиболее перспективную для каждого случая пару «сорбент-сорбтив». Например, подходящий для большинства случаев сорбтив – вода, но зимой лучше использовать метанол, так как температура его замерзания ниже нуля. Из сорбентов лучшие для климатических условий России результаты показали композиты типа «соль в пористой матрице» и металлоорганические каркасы.
Лучшие теплоизоляционные материалы: виды и свойства
Чтобы защитить жилье от теплопотерь и повышенной влажности, его покрывают различными типами утеплителей. Выбрать лучший из них очень сложно, ведь у каждого изделия собственные уникальные свойства и область применения. Теплоизоляционные материалы, которые применяются в современном строительстве, с одной стороны экологичны, с другой – удобны в монтаже. Изучив основные виды утеплителей, можно выбрать лучший теплоизоляционный материал, отвечающий именно вашим потребностям.
Основные виды утеплителей
Современные теплоизоляционные материалы для применения в строительстве и ремонте делятся на множество разновидностей: промышленные и бытовые, природные и искусственные, гибкие и жесткие теплоизоляционные материалы и т.д.
К примеру, по форме современная теплоизоляция разделяется на такие образцы, как:
По структуре отличают следующие типы термоизоляции со своей уникальной особенностью:
По виду сырья выделяют такие изделия различного класса качества:
Если нужно сделать термическую изоляцию трубопровода в стене, то для этого применяются специальные «рукава» повышенной плотности.
Определение лучшего изделия зависит не только от цены. Их выбирают по качественным характеристикам, эргономичным свойствам и экологичности.
10 лучших теплоизоляционных материалов
Рассмотрим основные свойства лучших изоляторов тепла, которые применяются в современном строительстве и ремонте:
Кроме того, у минеральной ваты много других достоинств:
К минусам этого изделия можно отнести необходимость монтажа гидроизоляционной пленки при установке, а также небольшой запас прочности.
Базальтовая плита – это подвид стекловаты, который обладает такими положительными качествами, как:
Применяются базальтовые плиты, как правило, снаружи для защиты фасадов, фундамента, кровли.
Главные достоинства пеностекла:
Разумеется, имеются и недостатки – высокая цена и воздухонепроницаемость, поэтому данный материал используют, в основном, для теплоизоляции промышленных зданий.
Эковата облает такими преимуществами:
Однако такой материал хорошо горит, легко повреждается при сжатии, а укладывать его очень непросто.
Экструдированный полистирол – самый популярный из пенопластов, так как обладает массой достоинств:
К минусам можно отнести горючесть, не пропускание воздуха и хрупкость при замерзании (если мороз ударил по мокрому пенопласту).
Среди преимуществ пенополиуретана можно выделить:
Недостатками можно назвать выделение вредных веществ в случае горения, не пропускание воздушных потоков и необходимость использование специального оборудования для задувки при монтаже.
Пробка обладает такими положительными качествами, как:
Однако максимальная температура использования – всего 120 °С.
ТСМ Керамик обладает такими уникальными свойствами, как:
При этом на напыление необходимо специальное оборудование, типа распылителя для краски или лоток и валик.
Такие утеплители, очень тонкие на вид, поражают своими свойствами:
Самые популярные марки в данной категории – Пориплекс, Экофол, Армофол и Пенофол.
Прежде всего, это боязнь воды и влаги, вступает в реакцию с металлическими вставками внутри стен или пола. Кроме того, шлаковата ужасно колется при укладке, поэтому при проведении работ по монтажу нужна обязательная защита.
Однако, несмотря на множество недостатков, низкая цена этого утеплителя делает его одним из самых популярных современных материалов для теплоизоляции.
На какие параметры обращать внимание при выборе?
Выбор качественной теплоизоляции зависит от множества параметров. Берутся во внимание и способы монтажа, и стоимость, и другие важные характеристики, на которых стоит остановиться подробнее.
Выбирая самый лучший теплосберегающий материал, необходимо тщательно изучить его основные характеристики:
Во время выбора теплоизоляции нужно помнить о целом спектре факторов. Надо учитывать основные параметры утепляемого объекта, условия использования и так далее. Универсальных материалов не существует, так как среди представляемых рынком панелей, сыпучих смесей и жидкостей нужно выбрать наиболее подходящий для конкретного случая тип теплоизоляции.
Теплопроводность. Просто о сложном.
При выборе качественного теплоизоляционного материала потребитель должен принимать во внимание целый ряд параметров, среди которых неизменно присутствует показатель теплопроводности. Высокой или низкой должна быть теплопроводность, что такое «лямбда», на какие показатели теплопроводности ориентироваться – ответы на эти и другие самые распространенные вопросы, возникающие при покупке утеплителя, вы найдете в данной статье.
Слово «теплопроводность» или еще более запутанное «лямбда» знакомо каждому школьнику из курса физики за восьмой класс. Однако со временем информация, которой мы не пользуемся, забывается. Попробуем освежить в памяти эти несложные и очень полезные знания.
Теплопроводность, как уже было сказано выше, — одно из ключевых понятий в современном строительстве, особенно когда речь заходит о теплоизоляционных материалах. От теплопроводности зависит толщина вашей стены или кровли, вес всего дома, а следовательно, и прочность (несущая способность) фундамента, долговечность конструкций и многое другое.
Современное определение теплопроводности – понятие комплексное. И состоит из нескольких составных частей, отвечающих за перенос тепла (теплообмен).
На первый взгляд формула кажется пугающей, но на самом деле все просто.
Суммарная или итоговая теплопроводность состоит из теплопроводности за счет конвекции, теплопроводности твердой и газообразной фазы, а также теплопроводности, учитывающей теплообмен за счет излучения.
Запутались еще сильнее? Тогда по порядку. Разберем каждый элемент этой формулы более подробно.
Теплообмен (или теплопередача) – это способ изменения внутренней энергии без совершения работы над телом или самим телом.
Теплопередача всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.
Из курса физики нам известно, что теплообмен включает в себя три вида передачи тепла: теплопроводность, конвекцию и излучение.
Теплопроводность — явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их
непосредственном контакте.
Если вы опустите ложку в стакан с горячим напитком, нагреется не только та часть ложки, которая погружена в жидкость, но и та ее часть, которая находится над водой.
Теплопроводность различных веществ неодинакова, она может быть плохой (низкой) и хорошей (высокой). Хорошая теплопроводность у металлов. Плохая — у шерсти, дерева и пластиков. Самым плохим проводником тепла является вакуум.
Для примера вспомните кухонную посуду: кастрюли и сковородки. Вы вряд ли станете снимать металлическую кастрюлю, полную вкусного супа, с горячей плиты голыми руками, потому что существует реальная опасность обжечь руки. Вместо этого вы используете кухонное полотенце, силиконовые или тряпичные прихватки, то есть те материалы, которые плохо проводят тепло.
Именно поэтому «правильные» кастрюли и сковородки снабжены пластмассовыми или деревянными ручками, плохо проводящими тепло. Вспомнить хотя бы старую бабушкину сковородку с деревянной ручкой: сковородка горячая, а за ручку схватиться можно безо всяких прихваток.
Как объясняется это явление? Рассмотрим на примере нагревания металлического стержня (или ложки из примера со стаканом).
В металле, как и во всех твердых телах, молекулы совершают колебательные движения около некоторых положений равновесия. Скорость колебательного движения молекул металла при нагревании увеличивается в той части, которая ближе расположена к пламени или источнику тепла. Эти молекулы, взаимодействуя с соседними молекулами, передают им часть своей энергии. В результате чего повышается температура отрезка стержня. Затем увеличивается скорость колебательного движения молекул в следующих отрезках стержня и так далее, до тех пор, пока не прогреется весь стержень. Именно поэтому вакуум обладает самой плохой теплопроводностью: в нем практически отсутствуют молекулы, которые бы передавали энергию друг другу. Важно отметить, что сами молекулы, передавая кинетическую энергию, не меняют свое местоположение, то есть само вещество не перемещается.
С первым понятием разобрались, посмотрим, что же дальше.
Следующая составляющая теплопроводности – это конвекция. У многих из вас на слуху такой прибор, как «конвектор». А вот почему он так называется, наверное, знает далеко не каждый. Хотя логично предположить, что название свое он получил за принцип работы – конвекцию.
Из курса физики следует, что конвекция — это перенос энергии струями жидкости или газа. Если в случае с теплопроводностью при теплообмене происходит перенос энергии, то при конвекции происходит перенос именно вещества.
Конвекторы (как и любые другие отопительные приборы) нагревают окружающий воздух, вследствие чего температура в комнате повышается и вам становится тепло. При этом струи теплого воздуха поднимаются вверх, а струи холодного опускаются вниз. Аналогично происходит процесс нагревания воды в чайнике: горячая вода поднимается, а холодная опускается на ее место. Этот же принцип заложен в отопительной системе для обогрева домов.
Различают два вида конвекции: естественная и вынужденная.
Нагревание воздуха в комнате солнечными лучами – это пример естественной конвекции. А вот если воздух нагревается тепловым вентилятором, то это уже вынужденная конвекция. Вентилятор заставляет воздух в комнате двигаться, при этом нагревая его до необходимой температуры. В качестве других примеров конвекции можно привести холодные и теплые морские течения, а также образование и движение облаков и ветров.
Переходим к следующей составляющей: излучение (лучистый теплообмен).
Излучение – это способ переноса энергии от одного тела к другому в виде электромагнитных волн. Как правило, это инфракрасное (IR) излучение. Этот принцип заложен еще в одном уникальном приборе – инфракрасном обогревателе.
Принцип его работы построен на том, что любое нагретое тело является источником излучения. Самый впечатляющий пример – Солнце. Пример поменьше – костер, распространяющий тепло на достаточно большое расстояние. В случае с обогревателем окружающие предметы нагреваются за счет электромагнитного излучения и в комнате становится тепло.
Этот вид теплообмена отличается тем, что может происходить и в вакууме. Ведь солнечная энергия как-то доходит до Земли.
Примечательно, что темные тела лучше поглощают и отдают энергию. Если необходимо максимально нагреть материал, его окрашивают в черный цвет. В качестве примера можно привести солнечные коллекторы (водонагреватели), которые устанавливаются на крышах домов. Эти устройства позволяют собирать тепло от солнца и нагревать теплоноситель, который затем передает тепло внутрь дома для обогрева помещений или нагрева воды.
Хуже всего поглощают энергию светлые материалы или материалы с отражающей способностью. Способность светлых тел хорошо отражать лучистую энергию учитывают в самых разных сферах: при строительстве самолетов, при возведении высотных зданий в жарких странах, даже при выборе цвета одежды в теплое время года. На окнах часто применяют металлизированные пленки, которые частично отражают солнечное тепло и спасают помещение от перегрева.
С базовыми принципами разобрались. Пришло время вернуться к нашей формуле.
LOGICPIR – это инновационный утеплитель, обладающий уникальными показателями теплопроводности – всего 0,021 Вт/м*К, позволяющий добиться максимальной экономии пространства при минимальной толщине теплоизоляции. Кроме того, PIR-плиты не впитывают влагу, тем самым предотвращая образование конденсата и надежно защищая ваш дом от появления плесенных грибов, клещей и бактерий, представляющих опасность для здоровья. LOGICPIR относится к новому поколению полиуретанов, окружающих нас повсеместно: начиная от деталей интерьера автомобилей, матрацев и обуви и заканчивая медициной, где самая поразительная сфера их применения – изготовление протезов для сердечно-сосудистой системы. Стоит ли говорить, что материал экологически безопасен, что подтверждено целым рядом сертификатов и заключений.
Итак, вернемся к теплопроводности.
Структурная и газовая теплопроводность – это теплопроводность компонентов, из которых состоит материал, а именно:
Если сравнивать теплоизоляцию PIR с пеностеклом или пенобетоном, то по структуре эти материалы схожи. Все они ячеистые и наполнены газом. Однако теплопроводности этих материалов будут отличаться.
Стекло и бетон, в отличие от пластиков, проводят тепло интенсивнее, соответственно, пеностекло и пенобетон обладают большей теплопроводностью и их показатели в качестве теплоизоляторов несколько хуже. Даже полимеры отличаются друг от друга теплопроводностью.
Как было сказано ранее, представленные материалы ячеистые и в каждом находятся какие-то газы. В пеностекле и пенобетоне это, как правило, окружающий воздух, в PIR – инертные газы. Хуже всего тепло проводят инертные газы, содержание молекул в 1 м3 очень маленькое, расстояние между молекулами очень большое, поэтому передать энергию между молекулами довольно сложно. Намного лучше тепло проводит воздух, поскольку он состоит из смеси разных газов, молекул очень много и все они друг с другом взаимодействуют.
Конвекционную составляющую у мелкоячеистой теплоизоляции обычно не рассматривают, поскольку размер ячеек теплоизоляции PIR ничтожно мал (меньше 1мм) и газ в этих ячейках неподвижен.
Последняя составляющая – излучение. Снизить ее влияние можно за счет применения дополнительных материалов, способных отражать тепловой поток. Для этого можно окрасить материал, скажем, в белый цвет. В случае с теплоизоляционными плитами PIR за отражение тепла отвечает фольга, которая покрывает материал с обеих сторон. Помимо функции отражения тепла фольга также несет защитную функцию с точки зрения утечки вспенивающего газа. По своим свойствам фольга является практически идеальным пароизоляционным материалом, а значит, способна задерживать миграции газов во внешнюю среду из ячеек теплоизоляции.
В процессе эксплуатации легкие инертные газы замещаются на более тяжелый окружающий воздух с хорошей теплопроводностью. Это происходит у всех пористых материалов за счет диффузных процессов.
Рассмотрим в качестве примера обычный воздушный шарик, наполненный гелием, который можно сравнить с одной ячейкой вспененной теплоизоляции. Новый шарик все время стремится улететь высоко в небо. Если утром он еще висел под потолком, то со временем он постепенно опустится и будет висеть в центре комнаты, а еще через несколько часов лежать на полу. Т.е. все это время газ за счет диффузии медленно выходит из шарика, и тот теряет свою «летучесть».
Так же и с теплоизоляцией. «Шарики» (ячейки), которые ближе всего расположены к границе с окружающим воздухом постепенно изменяют свой газовый состав. Однако те «шарики», которые находятся глубоко в материале, делают это очень медленно или не делают вовсе, поскольку инертному газу очень сложно пройти огромное количество стенок соседних «шариков» и вырваться наружу.
Кроме того, поверхность теплоизоляции покрыта фольгой, препятствующей выходу газа, соответственно, теплопроводность материала (ее газовая составляющая) сохраняется.
Итоговую формулу теплопроводности PIR можно записать в виде:
Подведем итог. Теплоизоляция – это очень важный показатель. От нее зависит, насколько теплым будет ваш дом. У наиболее эффективной теплоизоляции все ее составляющие () должны быть как можно ниже. У современной изоляции на примере LOGICPIR это достигается за счет применения инертных газов, полимеров и специальных покрытий, отражающих тепловой поток. Уверены, что теперь вы не только сможете безошибочно выбрать теплоизоляционный материал, отвечающий самым высоким требованиям, но и поможете своим детям сдать физику на высший балл.
Спасибо компании «Технониколь» за помощь в подготовке материала