что лучше рнк или векторная вакцина
Национальный Фармацевтический журнал
Войти на сайт
ВАКЦИНЫ ПРОТИВ COVID-19 И АДЪЮВАНТЫ, УЛУЧШАЮЩИЕ ИХ СВОЙСТВА.
Лилия Харисовна Каримова, к. х. н., Директор по развитию бизнеса ООО «Эр Ликид» (бизнес-направление фармацевтика и нутрицевтика SEPPIC)
Новый адъювант для профилактических вакцин компании SEPPIC
Различают несколько основных типов вакцин:
• вакцины на основе цельного (полногеномного) ослабленного вируса;
• инактивированные вакцины на основе полностью нежизнеспособного вируса;
• векторные вакцины;
• генетические вакцины (ДНК и РНК вакцины);
• субъединичные вакцины на основе отдельных компонентов патогена, таких как белки, пептиды или генетический материал (например, белковые или рекомбинантные вакцины). Разработчики из различных стран на основании накопленных знаний и имеющихся у них результатов и методов исследований выбирают для разработки тот тип вакцины, который считают наиболее действенным для обеспечения эффективной защиты людей от вируса SARS-CoV-2 (Рис.1).
На настоящий момент среди вакцин-кандидатов против COVID-19, зарегистрированных в списке ВОЗ, можно найти практически все из вышеназванных типов вакцин. Коротко напомним, что представляет собой каждый из них и чем они отличаются друг от друга.
ВЕКТОРНЫЕ ВАКЦИНЫ
Векторные вакцины – это также вакцины на основе живых вирусов, однако здесь есть небольшой, но очень важный нюанс: это вакцины на основе хорошо изученных и достаточно безобидных для человека вирусов («векторов» или вспомогательных транспортных вирусов) с встроенными в них фрагментами генома «злого вируса» (Рис. 3). В случае векторных вакцин в геном хорошо изученного и, в целом, безобидного вируса, например, аденовируса («вектора»), путём генетических модификаций встраивается небольшой ген – участок генома SARS-CoV-2. При вводе в организм такой векторной вакцины генетически модифицированные вспомогательные вирусы провоцируют такой же сильный иммунный ответ на белки-антигены SARS-CoV-2, как в случае «живой» полногеномной вирусной вакцины.
Преимущество указанных вакцин, по замыслу разработчиков, в той же высокой эффективности, что и у вакцин на основе живых ослабленных вирусов, но в большей управляемости в связи с достаточной изученностью и предсказуемостью «вектора»-носителя. Векторные вакцины начали разрабатываться и изучаться относительно недавно, поэтому к массовому применению вакцин этого типа ученые также подходят с должной и необходимой осторожностью.
ГЕНЕТИЧЕСКИЕ ВАКЦИНЫ
Еще два перспективных типа вакцин против COVID-19, разрабатываемые мировым сообществом, – вакцины на основе нуклеиновых кислот, а именно, ДНК- и РНК-вакцины. В случае ДНК-вакцины нуклеотидная последовательность, кодирующая антиген SARS-CoV-2, встраивается в вектор – бактериальную плазмиду – небольшую стабильную кольцевую молекулу ДНК, способную к автономной репликации. Сама по себе плазмида не вызывает нужного специфического иммунного ответа, для этого, собственно, в неё и вшивают гены иммуногенных белков. Указанный модифицированный геном направляется в клетку, встраивается в ее ядро и образует вирусный белок (антиген), индуцирующий иммунный ответ.
Согласно замыслу разработчиков, ДНК-вакцины не могут вызвать заражение SARS-Cov-2, однако иммунитет, который они обусловливают, должен оказаться таким же сильным, как в случае «живых» вакцин. Тем не менее, влияние ДНК-вакцин на живые организмы изучено еще в меньшей степени, чем влияние векторных вакцин, поэтому вряд ли в ближайшее время ДНК-вакцины будут допущены к массовому применению на людях. Также несколькими производителями вакцин в мире разрабатываются вакцины против COVID-19 на основе РНК. Это вакцины, которые содержат вирусную молекулу – матричную РНК (сокращенно мРНК). Как и в случае с ДНК-вакцинами, вирусная молекула представляет собой некий шаблон, с которого организмом напрямую считывается формула вирусного белка. Но в отличие от ДНК-вакцин, в этом случае мРНК не встраивается в клеточный геном. Липидные наночастицы с мРНК вводятся при вакцинации в организм, проникают через мембрану клетки-мишени внутрь нее и становятся шаблоном для синтеза вирусных белков-антигенов. Собственные клетки организма начинают синтезировать вирусные белки, вызывая иммунный ответ организма (Рис. 5).
В случае применения РНК-вакцины получается двойной иммунный ответ: с одной стороны, выработку антител вызывают вирусные белки, с другой стороны, сами липидные частицы с мРНК могут стимулировать иммунный ответ, так как «похожи на вирус» и воспринимаются организмом соответственно. Разработчики предполагают, что при вакцинации РНК-вакцинами из-за их «двойного действия» в организме быстро возникнет сильный и стойкий иммунитет.
В случае генетических вакцин преимуществом является их относительно быстрое и экономически выгодное производство: небольшую молекулу мРНК можно довольно быстро воссоздать, наработка нужного антигена обойдется недорого. Это делает вакцину доступной широким массам. Тем не менее иммунологи очень осторожно относятся к РНК-вакцинам, так как из-за малого периода их изучения никто не знает наверняка, как именно мРНК будет вести себя в живом, особенно в репродуктивном, организме.
СУБЪЕДИНИЧНЫЕ ВАКЦИНЫ
Одним из самых безопасных типов вакцин в настоящее время считаются субъединичные вакцины, то есть вакцины на основе белков или фрагментов вируса (Рис. 6), не имеющих в своем составе ни ДНК, ни РНК как, например, белковые вакцины.
Попадая в организм при вакцинации, смесь фрагментов вирусных белков-антигенов также способна вызывать иммунный ответ. При этом такая вакцина абсолютно безопасна, здесь невозможны мутации вируса, поэтому вызвать у человека заболевание COVID-19 такая вакцина не может. Недостатком субъединичных вакцин является довольно длительный и сложный процесс наработки и очистки – получить достаточное для вакцинации очищенное количество вирусного белка не так легко. Кроме того, в чистом виде белковые вакцины не вызывают сильный иммунный ответ, поэтому недостаточно эффективны. В связи с этим при разработке белковых вакцин очень важно:
а) усилить иммунный ответ, вводя в состав белковых вакцин соединения, усиливающие их эффективность (эти вещества называют адъюванты),
б) увеличить количество нарабатываемой вакцины также за счет добавления к наработанному вирусному белку существенного количества того же адъюванта.
ИНАКТИВИРОВАННЫЕ ВАКЦИНЫ
Наконец, мы подошли к еще одному безопасному и перспективному типу вакцин – инактивированным вакцинам. Здесь так же, как и в случае «живых» вакцин на основе ослабленного вируса используется цельный геном SARS-Cov-2, но в случае инактивированных вакцин вирус полностью деактивирован либо высокой температурой, либо дезинфицирующими составами, либо определенным видом излучения, что делает его совершенно нежизнеспособным. Этот инактивированный вирус никогда не сможет инфицировать клетку. Тем не менее по структуре «неживой» инактивированный вирус остается полным аналогом «живого» вируса и поэтому вызывает в организме иммунный ответ. Проблема в том, что в чистом виде инактивированные вирусы индуцируют существенно более низкий иммунный ответ, нежели живые, пусть даже и ослабленные вирусы. В связи с этим в составах инактивированных вакцин так же, как и в случае субъединичных вакцин используют адъюванты – вещества, которые значительно усиливают иммунный ответ, делая эти вакцины схожими по эффективности с живыми.
Основываясь на вышесказанном, мы склоняемся к выводу, что наиболее безопасными для человека являются субъединичные и инактивированные вакцины. Для повышения эффективности указанных безопасных вакцин до уровня более иммуногенных «живых», векторных или генетических вакцин необходимо применение в их составах современных адъювантов. Что же такое адъюванты и какова их роль в вакцинах?
АДЪЮВАНТЫ – КЛЮЧЕВАЯ СОСТАВЛЯЮЩАЯ ЭФФЕКТИВНЫХ И БЕЗОПАСНЫХ ВАКЦИН
Адъювант (от лат. adjuvans – «помогающий, поддерживающий») – соединение или комплекс веществ, используемых для усиления иммунного ответа при введении одновременно с антигеном.
Адъюванты на протяжении десятилетий применяются для улучшения иммунного ответа на вакцинные антигены. Включение адъювантов в состав вакцин направлено на усиление, ускорение и продление специфического иммунного ответа до желаемого уровня. Таким образом, адъюванты играют ключевую роль в получении эффективного и длительного иммунитета.
Использование адъювантов в вакцинах позволяет:
• Усилить краткосрочный иммунный ответ;
• Увеличить продолжительность иммунитета, то есть сократить частоту требуемых бустерных иммунизаций;
• Направить иммунный ответ (гуморальный или клеточный иммунитет);
• Уменьшить антигенную нагрузку при сохранении эффективности вакцины;
• Улучшить иммунный ответ у ослабленных или иммунокомпроментированных вакцинируемых лиц;
• Снизить себестоимость вакцины;
• Повысить стабильность вакцины.
Интерес к адъювантам для вакцин резко возрос в 2000-е годы. Ведущие фармацевтические компании-производители путем применения адъювантов разработали более эффективные и безопасные вакцины против гриппа.
В последние годы появляется все больше и больше новых вакцин-кандидатов как для профилактики инфекционных заболеваний, так и для терапии самых тяжелых заболеваний человечества. В связи с низкой иммуногенностью таких вакцин во многих случаях требуется введение в их состав адъювантов. Новые достижения в области аналитической биохимии, очистке макромолекул, технологии рекомбинантной ДНК, улучшенное понимание иммунологических механизмов и патогенеза заболевания позволили улучшить техническую основу разработки и применения адъювантов.
В настоящее время известно довольно много эффективных адъювантов, которые классифицируются по природе происхождения, механизму действия и физическим или химическим свойствам.
Так, в современных вакцинах широко применяются гели гидроксида алюминия, фосфаты алюминия или кальция, препараты на основе масляных эмульсий и ПАВ, дисперсные адъюванты, например, виросомы, структурные комплексы сапонинов и липидов и многие другие типы адъювантов.
Как уже упоминалось выше, наиболее эффективно и поэтому чаще всего адъюванты используются в следующих категориях вакцин:
• вакцины на основе белков (рекомбинантные субъединичные);
• инактивированные;
• векторные вакцины (для уменьшения дозы).
Для каждой вакцины адъювант подбирается таким образом, чтобы получить оптимальное соотношение эффективности указанной вакцины (получение сильного и продолжительного иммунного ответа) и ее безопасности для человека (минимальная реактогенность и отсутствие побочных эффектов).
К сожалению, немаловажным аспектом уже зарегистрированных в настоящее время адъювантов является их недоступность широкому кругу разработчиков. Практически все имеющиеся на настоящий момент современные адъюванты, применяемые в профилактических вакцинах, за исключением соединений алюминия, являются собственностью крупнейших фармацевтических компаний (см. табл. 2). В первую очередь, к ним относятся адъюванты для приготовления эмульсионных вакцин. Эти адъюванты на настоящий момент считаются наиболее перспективными в профилактических вакцинах, но остаются при этом и наименее доступными, так как были специально разработаны крупными биофармацевтическими компаниями исключительно для вакцин собственного производства.
Эти недоступные широкому кругу разработчиков адъюванты ведущих фармацевтических компаний отлично зарекомендовали себя в составах готовых вакцин указанных производителей. К примеру, эмульсионные адъюванты масло-в-воде MF59, AS03 и AF03 продемонстрировали высокую эффективность в вакцинах против гриппа. Сегодня вакцинами на их основе провакцинировано >120 миллионов человек, их профиль безопасности и иммуногенности тщательно и глубоко изучен и подтвержден на значительном количестве клинических испытаний (см. табл. 3).
НОВЫЙ ЭФФЕКТИВНЫЙ И БЕЗОПАСНЫЙ АДЪЮВАНТ GMP КАЧЕСТВА ДЛЯ ШИРОКОГО КРУГА РАЗРАБОТЧИКОВ ЧЕЛОВЕЧЕСКИХ ВАКЦИН
Франсуа Бертран, руководитель направления разработки и производства адъювантов компании Seppic, в своем выступлении по поводу выпуска адъюванта SEPIVAC TM SWE на мировой рынок сказал: «Указанная разработка иллюстрирует наше общее стремление привнести готовый эффективный и общедоступный адъювант в мировое сообщество разработчиков вакцин. Мы твердо верим, что SEPIVAC TM SWE ускорит разработку новых профилактических вакцин для людей и будет способствовать более здоровому будущему человечества во всем мире».
Векторные вакцины vs РНК-вакцины: почему эффективность AstraZeneca лишь 70%
Ирина Якутенко
Но, в любом случае, такая разница в эффективности в двух группах – крайне интересная штука. Если это не следствие недостаточной статистики (будем надеяться, что нет), то оно указывает на возможные недостатки векторных вакцин – у AstraZeneca как раз такая. Векторные вакцины представляют собой геном какого-то вируса – в данном случае, аденовируса шимпанзе, – из которого вырезали гены, делающие его опасным, и вставили гены какого-нибудь белка того вируса, против которого направлена вакцина – здесь это спайк-белок коронавируса. Векторный вирус AstraZeneca не может размножаться, но может проникать в клетки, где клеточные ферменты начинают считывать записанную в его геноме информацию и синтезировать вирусные белки. Все белки, а не только наш целевой белок. Клетки, в которые проник вирус-вектор, предъявляют клеткам иммунной системы фрагменты этих насинтезированных чужеродных белков, те возбуждаются, запоминают их и при следующей встрече немедленно запускают иммунный ответ.
Теперь вернемся к нашим двум группам. После первой прививки иммунная система добровольцев уже немного запомнила как белки коронавируса, так и белки аденовируса. И после второй инъекции она уже реагирует на них. И очень может быть, что не слишком высокая эффективность у людей из группы, которая сразу получила полную дозу вакцины, связана с тем, что у них сформировался сильный иммунный ответ на белки аденовируса (их намного больше, чем белков коронавируса), который «смазал» формирование иммунитета к спайк-белку SARS-CoV-2.
Конкуренция иммунного ответа к белкам вируса-вектора с иммунным ответом к целевому белку – серьезная проблема вирусных вакцин. Обычно в этом контексте говорят о предсуществующем иммунитете к аденовирусам после перенесенных простуд (немалая часть которых вызывается этой группой вирусов), но и сама прививка также генерирует этот иммунитет. И нельзя исключать, что у добровольцев, которые сразу получили полную дозу вакцины, именно этот «побочный» иммунитет не дал как следует сформироваться иммунитету против спайк-белка.
Сами разработчики говорят о «неоптимальном праймировании иммунной системы» при режиме «два раза по полной дозе». Это довольно туманное объяснение, но, будем надеяться, что в статье, которую они опубликуют по результатам третьей фазы, оно будет раскрыто подробнее. Есть серьезные подозрения, что «неоптимальное праймирование» – это как раз тот самый иммунитет к вектору.
Но, в любом случае, хорошо, что разработчики попробовали эти два режима. Теперь мы знаем, что самый очевидный механизм (две равные дозы), который был выбран в качестве основного, куда менее эффективен. Интересно, кстати, почему разработчики решили попробовать два режима: в отчете о первых двух фазах не говорится, что две дозы отличаются по количеству вируса. Более того, режим с половинной дозой применялся только в ветке испытаний в Великобритании. Представители AstraZeneca уверяют, что часть добровольцев получили пол-дозы по ошибке, но затем оказалось, что у этих людей значительно меньше выражены побочные эффекты и испытания решили продолжать. Красивая версия, хотя и выглядящая немного как история для прессы. Вторая ветка испытаний проходила в Бразилии и задействовала только режим двух полных доз. Тут сразу напрашиваются мысли о принципиально разном количестве инфекций в Великобритании и Бразилии, что, очевидно, влияет на результат: чтобы он был корректен, оба режима нужно было опробовать в обеих ветках.
Разработчики российской векторной вакцины «Спутник V» также опубликовали краткий отчет о результатах третьей фазы испытаний – именно она сейчас идет в России, хотя регистрация препарата уже получена. Эта вакцина состоит из двух разных аденовирусных векторов, соответственно, после введения первой дозы возникает иммунитет к первому, но не ко второму вектору (точнее, небольшой кросс-иммунитет имеет место, но он, судя по опубликованной статье с результатами фаз 1/2, не снижает эффективность иммунного ответа к коронавирусному компоненту вакцины). Такой ход решает проблему иммунитета к вектору для одного сета вакцинации. Но если ревакцинация потребуется, скажем, через год – у «Спутника» возникнут те же проблемы иммунитета к вектору.
Безусловно, мы не знаем, каковы отдаленные последствия этого типа вакцин – до сих пор они никогда не использовались у людей – но, строго говоря, мы этого не знаем и для векторных вакцин против коронавируса. А учитывая неприятную перспективу ревакцинации в случае, если иммунитет к SARS-CoV-2 окажется недолговечным, формирование иммунитета к самому вектору и вовсе ставит под вопрос целесообразность выпуска таких вакцин.
Виды вакцин от COVID-19: какую выбрать
Оглавление
Сегодня поставить прививку от можно с использованием нескольких препаратов. Какие виды вакцин от ковида применяются в нашей стране? Чем они отличаются друг от друга? Какие прививки ставят в других странах? Давайте разберемся в этих вопросах.
Российские типы вакцин от ковида
В нашей стране в настоящий момент используются исключительно отечественные препараты.
Они разделяются на несколько групп:
Рассмотрим все вакцины от коронавируса более внимательно, определим их виды и отличия.
«Спутник V» (от Исследовательского центра имени )
Препарат создан на основе аденовируса (вируса, вызывающего ОРВИ) человека. Для разработки вакцины вирус лишили гена размножения. Благодаря этому он стал так называемым вектором (транспортным средством для доставки груза в клетки организма). В качестве груза в данном конкретном случае выступает генетический материал заболевания, против которого и работает препарат. Поступая в клетку, груз стимулирует выработку антител.
Важно! После введения первой дозы препарата организм человека от заражения еще не защищен. Это обусловлено тем, что антитела вырабатываются постепенно. Максимальный их уровень обеспечивается примерно через 2–3 недели после постановки второй прививки.
Иммунитет после вакцинации сохраняется примерно 2 года. При этом важно понимать, что антитела в крови присутствуют определенное количество времени, которое во многом зависит от индивидуальных особенностей пациента. В настоящий момент говорят о том, что хватает их примерно на год. При этом клеточный иммунитет сохраняется. Он защищает организм и после исчезновения антител.
«Спутник Лайт» (однокомпонентный вариант вакцины «Спутник V»)
Этот препарат отличается от исходного тем, что достаточно введения одной его дозы.
«ЭпиВакКорона» (от Центра «Вектор»)
Данная вакцина разработана на основе искусственно созданных фрагментов белков вируса. Благодаря этому она дает минимальное количество побочных эффектов. К основным относят возможную болезненность в месте инъекции и незначительное повышение температуры тела на короткое время. При этом и эффективность препарата является более низкой, чем у вакцины «Спутник V». Для повышения данного показателя проводится двукратная вакцинация с интервалом в 2–3 недели. На формирование иммунитета уходит около 30 дней. Ревакцинация по предварительным оценкам требуется примерно через 6–9 месяцев.
Разработчики уверяют, что препарат может обеспечить защиту организма от различных штаммов коронавируса. Но существует и другое мнение. Некоторые специалисты утверждают, что вакцина уязвима при мутациях вируса.
Иностранные виды вакцин от коронавируса
К ним относят: Pfizer/BioNTech и Moderna. Вирусные белки для производства препаратов синтезируются непосредственно в организме человека. Матричная РНК представляет собой своеобразную инструкцию. Прочитав ее, клетка начинает самостоятельно вырабатывать закодированный белок (фрагмент коронавируса). Препараты Pfizer/BioNTech и Moderna сегодня применяются для вакцинации в Великобритании, Израиле, странах Евросоюза, на Украине, в США и в других государствах. Прививки демонстрируют хорошую защиту от тяжелого течения заболевания. Это обусловлено тем, что вакцины проникают вглубь клеток, что имитирует инфицирование и приводит к формированию полноценного иммунитета. Недостатком препаратов является их недостаточная изученность.
Таким средством является вакцина AstraZeneca. Изготовлена она по принципу препарата «Спутник V». В качестве вектора в AstraZeneca выступает модифицированный вирус шимпанзе. Эффективность этой вакцины составляет 79%. При этом препарат на 100% защищает от тяжелого течения вирусной инфекции. Он используется в странах Евросоюза.
К ним относят Sinopharm и Sinovac.
Основными крупными поставщиками вакцин стали биофармацевтические компании из Китая. Они разработали препараты по принципу российского препарата «КовиВак». Вакцинация Sinopharm и Sinovac проводится не только в КНР, но и в Турции, ОАЭ, Чили, Аргентине и ряде других стран. Во время третьей фазы исследований определена общая эффективность препаратов, которая варьируется от 50% до 84%. При этом от тяжелого течения заболевания средства защищают на 100%.
Сравнение российских препаратов
Для правильного выбора прививки от коронавируса нужно сравнить между собой представленные препараты. Мы провели такое сравнение и оформили его в виде таблицы для вашего удобства.
«Спутник V» | «Спутник Лайт» | «Кови Вак» | «Эпи Вак Корона» | |
---|---|---|---|---|
Срок формирования иммунитета (в днях) | 42 | 28 | Исследуется | 35-40 |
Формирование антител (в процентах от вакцинированных) | У 98% | Почти у 97% | Исследуется | Более чем у 82% |
Эффективность | Более 91% (в том числе для пациентов старше 65 лет) | Почти 80% | На стадии исследований | В настоящий момент не установлена |
Побочные эффекты вакцин
Необходимо сразу уточнить, что все побочные эффекты легкого и умеренного типов являются вариантом нормы.
В некоторых случаях также возможно развитие диареи.
После введения препарата пациент на 20–30 минут остается в медицинском учреждении. Это необходимо по причине риска развития аллергической реакции.
Преимущества обращения в МЕДСИ
Классическая или векторная: оправдан ли ажиотаж вокруг вакцины «КовиВак»
В последние дни в Москве наметился ажиотажный спрос на вакцину от коронавируса «КовиВак», разработанную Центром им. Чумакова. Утром 10 июля власти сообщили, что препарат завезли в 14 павильонов — около 850 доз в каждый пункт. Москвичи выстроились в огромные очереди, и к концу дня «КовиВак» уже закончился. Это не первый случай, когда «КовиВак» заканчивается и пункты вакцинации вынуждены приостанавливать прививочную кампанию именно этим препаратом.
«Спутник», «КовиВак» и «ЭпиВакКорона» — в чем разница
В России на данный момент одобрено четыре вакцины от коронавирусной инфекции — помимо «КовиВака» это «Спутник V» Центра им. Гамалеи, его однокомпонентный вариант «Спутник Лайт» и «ЭпиВакКорона» центра «Вектор».
«КовиВак» относится к классическому типу вакцин — это цельновирионная инактивированная, она производится на основе цельного «убитого» (инактивированного) коронавируса SARS-CoV-2.
«Спутник V» — векторная вакцина, где в качестве вектора задействовано два разных типа аденовируса человека: в них встроен фрагмент гена SARS-CoV-2, который кодирует один из белков вируса, а именно S-белок. Вектор — это вирус, лишенный гена размножения, поэтому он не представляет опасности заражения для организма. Ученые используют векторы для транспортировки генетического материала из другого вируса, против которого делается вакцина, в клетку.
В случае с «ЭпиВакКороной» речь идет о пептидной платформе, состоящей из искусственно синтезированных фрагментов того же S-белка SARS-CoV-2.
Оправдан ли ажиотаж
Объективных оснований считать, что «КовиВак» лучше, чем две другие вакцины, нет. Эксперты обращают внимание на то, что нельзя только лишь на основании типа платформы той или иной вакцины говорить о силе иммунного ответа на нее. Несмотря на то что не все аспекты тех или иных защитных свойств нынешних вакцин изучены до конца, все вакцины, прошедшие клинические испытания, дают защиту от смертельной формы болезни, объясняет научный консультант лаборатории Genetico Екатерина Померанцева. Сравнивать препараты не имеет смысла, поскольку у них разный принцип действия, добавляет руководитель НИИ вирусных инфекций «Вектор» Александр Семенов.
Судя по тому, что сейчас известно про одобренные ВОЗ другие сделанные по типу классических вакцин — китайские Sinopharm и Sinovac, а также про индийскую вакцину производства Bharat Biotech, — их эффективность несколько меньше «Спутника» и лежит в диапазоне 70–80%. У Спутника — более 90%.
«Все эти вакцины, судя по всему, работают», — говорит специалист в области молекулярной биологии, профессор Сколковского института науки и технологий Константин Северинов. Еще в январе, когда Центр им. Чумакова только разрабатывал «КовиВак», эксперт высказался в пользу «Спутника». В качестве аргумента он заявил о том, что по векторной вакцине была статья в авторитетном медицинском журнале The Lancet.
В случае коронавируса и те и другие достаточно хороши — все с высокой эффективностью снижают риск тяжелого течения болезни и смерти, отмечают эксперты. Однако в отношении коронавирусной инфекции на сегодняшний день более изучены именно векторные вакцины. Про инактивированные, классические вакцины против COVID-19 существенно меньше научных публикаций.
«Есть такое понятие — эпидемиологический эффект вакцины, то есть способность предотвратить распространение заболевания. Это проверяется на огромном количестве людей. К примеру, нужно привить миллион человек и сравнить с миллионом непривитых, чтобы посмотреть, насколько снизилось распространение инфекции», — говорит глава лаборатории НИИ вирусологии им. Ивановского профессор Александр Бутенко. В качестве положительного примера эксперт привел «Спутник V», которым привиты уже несколько миллионов человек более чем в 30 странах. В случае «КовиВака», по его словам, такие выводы делать пока рано.
Страх перед побочкой
Одной из причин ажиотажного спроса на «КовиВак» эксперты называют предположение, что эта вакцина переносится легче. Однако полного отсутствия побочных эффектов «КовиВак» не гарантирует, говорит Бутенко. «Нет ни одной вакцины, у которой не было бы реакции. Она должна быть всегда. Но в очень ограниченных рамках, чтобы не вызывать проблем», — подчеркнул эксперт.
«Все вакцины от коронавируса исследованы не до конца. Другой вопрос — что такое «до конца». Если мы захотим проникнуть в головы антипрививочников, мы не сможем понять, что они подразумевают под концом. Официально уже были применены десятки тысяч доз «Спутника», и вроде как никто не умер», — говорит Северинов.
«На самом деле никакой доказанности эффективности вакцины «КовиВак» пока нет. Люди просто верят репутации», — объясняет ажиотажный спрос на «КовиВак» молекулярный биолог, доктор биологических наук, профессор, член-корреспондент РАН Сергей Нетесов. «У этой организации в России самый большой опыт разработки и производства вакцин», — объясняет эксперт.
«Этот центр [им. Чумакова] был основан, когда потребовалось срочно разработать и запустить производство вакцины против полиомиелита, и успешно с этой задачей справился. У этого центра традиционно очень высокая репутация. Эта репутация, по всей видимости, и привлекает людей к вакцине, которую разработал и производит этот центр. Хотя по уровню доказанности в научном мире эта вакцина пока что уступает вакцине «Спутник», — говорит Нетесов.
Наиболее распространенной вакциной от COVID-19 в России является «Спутник V». Она была зарегистрирована первой, и ею привито наибольшее число россиян. «КовиВак» была зарегистрирована третьей по счету, и вакцинация ею началась уже после того, как «Спутником V» несколько месяцев широко прививали россиян. Гигантские очереди могли появиться из-за ограниченного количества доз «КовиВака», не исключил Бутенко. По его словам, масштабное производство «КовиВака» пока не налажено.