что лучше текстолит или гетинакс
Этот вопрос часто задают нам клиенты, и пришла мысль доступным языком написать таки эту статью. Наше предприятие Сервис Юнион работает с различными электроизоляционными материалами с 2012 года, за все эти годы накопился опыт работы не только с данными пластиками, но и с различными поставщиками данных материалов (не только в СНГ, но и за пределами). Мало того что собственно текстолит отличается от стеклотекстолита к примеру, но и сам стеклотекстолит у разных поставщиков даже может быть совсем разный по структуре, технологии изготовления, качеству и цене соответственно. Многие клиенты ссылаются на текстолиты прошлых времен, даже приводят ГОСТы, но к сожалению реальность такова, что китайский рынок заполнил все пробелы в данной сфере. Для примера приведу частый запрос клиентов на порезку ласт для плавания из стеклотекстолита. Практически все клиенты взяли за основу и ссылаются на старые советские ГОСТы, что к примеру в стеклотекстолите 2 мм должно быть 10-12 слоев стеклоткани, в связи с чем они представляют себе технологию производства ласт на основании опыта пользователей форумов, которые делают из старых запасов (снимают по 6 слоев ткани). Но современные стеклотекстолиты в 90% не соответствуют старым ГОСТам, потому что производятся в Китае, где свои технологии и правила. Мы сами долгие годы критерием выбора стеклотекстолита считали прочность и качество связующего, так как многие дешевые поставщики предлагают материалы, которые уже приезжают с расслоившимися краями, и выглядят как растрепанные книги. Определившись с надежными постащиками, мы работали многие годы с качественным сертифицированным материалом, пока не столкнулись с запросами изготовления ласт.
Так вот, что же такое эти 3 типа электроизоляционных материалов и в чем отличие?
Кратко: гетинакс самый дешевый материал из трёх в этой статье, простой в механической обработке (даже методом штамповки изготавливают платы сразу со всеми отверстиями после удара пуансона), но из-за своей низкой огнестойкости, малой прочности используется для дешевого изготовления плат в низковольтном оборудовании, и не используется в ответственных электронных приборах.
Текстолит – композиционный материал: волокнистая основа (ткань), залитая полимерным связующим (эпоксидной или полиэфирной смолой, бакелитом и т. п.). Прочный, с хорошими электро- и теплоизолирующими свойствами текстолит легко обрабатывается вручную и на станках. Устойчив к изнашиванию, к воздействию высоких температур, влагостойкий. Широко применяется в электротехнике, машиностроении и для поделочных работ.
Применение текстолита
Текстолит в электротехнике заменяет гетинакс (более дешёвый композит на бумажной основе).
Разновидности текстолита
Материал различают по виду волокнистой основы: собственно, обычный текстолит на хлопчатобумажной ткани (шифон, миткаль, бязь, бельтинг) с пропиткой фенолформальдегидной или крезолформальдегидной смолой, и стеклотекстолит на основе стекловолокна.
Текстолит изготавливается горячим прессованием. Материал выпускается в виде плит (листов), стержней, втулок. В радиоэлектронике чаще всего используется фольгированный текстолит для изготовления плат с токопроводящими дорожками.
Маркировка
Наименование и обозначение текстолита и стеклотекстолита регламентируют ГОСТы 5-78 и 12652-74. Наиболее распространённые и востребованные марки:
Технические характеристики и свойства материалов
Текстолиты прочны на сжатие, хорошо обрабатываются резанием (сверление, фрезерование). Устойчивы к воздействию влаги, щелочей и кислот. У стеклотекстолитов выше удельное сопротивление и термостойкость.
Основные свойства материалов приведены в таблицах ниже:
Разрушающее напряжение при изгибе перпендикулярно слоям, МПа
Стеклотекстолит, гетинакс, текстолит
|
Стеклотекстолит, гетинакс, текстолит
Стеклотекстолит представляет собой материал, состоящий из нескольких слоев стеклоткани, которые в свою очередь пропитаны полимерной термореактивной смолой и склеены между собой под высоким давлением. Стеклотекстолит можно подразделить на два вида: конструкционный и электротехнический.
Стеклотекстолит это отличный композиционный пластик, который обладает самыми высокими диэлектрическими и механическими показателями среди пластмасс, отличается высокой стойкостью к действию внешней среды, влагостойкостью и долговечностью (может находиться в эксплуатации в течении 20 лет). На сегодняшний день стеклотекстолит нашел свое применение в различных отраслях народного хозяйства.
Следует помнить, что стеклотекстолит не является токсичным материалом и не взрывоопасен. Однако в процессе обработки материала в воздух выделяется стеклянная пыль, поэтому помещение, где обрабатывается данный материал должно быть оснащено вентиляцией.
Гетинакс является слоистым материалом, который был получен путем горячего прессования бумаги, пропитанной теплореактивной смолой. Различают несколько видов гетинакса: гетинакс марки I, гетинакс марки V, гетинакс марки ЛГ. Все эти виды обладают высокими электроизоляционными показателями.
Гетинакс марки I производится на основе фенолформальдегидной смолы. Данный вид гетинакса имеет высокие механические свойства, и в связи с этим хорошо поддается обработке. Отличается высокой водостойкостью. Используется в низковольтной технике, и для работы на воздухе.
Гетинакс марки V производится на основе эпоксидной и фенолформальдегидной смолы. Обладает такими же характеристиками, как и гетинакс марки I, и высокой электроизоляцией. Применяется как электроизоляционный материал в условиях нормальной относительной влажности воздуха.
Гетинакс марки ЛГ представляет собой ламинарный брикетированный материал, в состав которого входит, несколько слоев полиэфирной бумаги. Данный материал применяется в качестве электроизолирующего материала при суровых внешних условиях.
Текстолит это еще одна разновидность слоистого материала на основе хлопчатобумажной ткани, пропитанной полимерной термореактивной смолой. Применяется для изготовления втулок, шестерен, панелей, подшипников скольжения и для других изделий промышленного назначения. Изделия из текстолита обеспечивают бесшумность работы механизма, отличаются длительным сроком эксплуатации.
Руководство по материалам электротехники для всех. Часть 6
Продолжение руководства по материалам электротехники. В этой части продолжаем разбирать диэлектрики полностью синтетические по происхождению. Тоесть всем известные пластики. В этой части: карболит, гетинакс, текстолит.
Добро пожаловать под кат (ТРАФИК)
Доступные природные материалы использовались широко, но, с развитием техники становилось всё более очевидным, что природные материалы порой полное дерьмо. Большой разброс свойств, подверженность гниению, трудности в добыче — поэтому поиски искусственных заменителей велись и ведутся всё время. Появление синтетических материалов — это революция не только техническая, но и экономическая, политическая. Вам больше не нужны колонии чтобы покрыть свои потребности в резине. Экипировка вашего солдата стала легче в несколько раз. В этом разделе — материалы, полученные «с нуля», а не попытка улучшить природные, как в предыдущем разделе.
Многие из приведенных материалов являются полимерами — материалами с длинными молекулами, состоящими из простых однотипных кирпичиков — мономеров. Полимеры можно разделить на две большие группы по их поведению при нагреве, это термопласты и реактопласты. Термопласты при нагревании плавятся, реактопласты при нагревании разлагаются.
Соответственно гору старых пластиковых игрушек из термопластов можно переплавить в новое изделие, а гору старых изделий из реактопластов так переработать не выйдет.
Полимер может состоять из чистого мономера, а может также содержать со-полимер, который встраивается в структуру молекулы. Например есть два мономера: А и Б. Молекула полимера из чистого А будет выглядеть так:
Молекула полимера из сополимеров А и Б может выглядеть так:
Введение сополимера позволяет изменить свойства пластмассы. Пример — полистирол и АБС пластик. Полистирол прозрачный хрупкий пластик, введение сополимера акрилонитрила и введение добавки из полибутадиена дает на выходе ударопрочный пластик.
Если в полимере все несимментричные звенья смотрят в одну сторону, такой полимер называется изотактическим:
Если в полимере они чередуются, то такой полимер называется синдиотактическим:
Обычно, стереорегулярность влияет на важные для электроники свойства материала незначительно, поэтому не указывается.
Общие свойства полимеров
Полимеры, благодаря своей структуре из длинных молекул, обладают некоторыми общими
свойствами, которые стоит рассмотреть внимательнее.
1. Полимеры не имеют четкой температуры фазового перехода, как например металлы. Они словно карамель, с ростом температуры размягчаются, превращаясь в вязкую жидкость. Поэтому для полимеров «температура плавления» — это температура, при которой вязкость полимера уже позволяет ему течь, но это не означает, что до этой температуры он твёрдый.
Температура стеклования — это температура, ниже которой полимер из высокоэластичного состояния переходит в стеклообразное состояние, с ростом твердости и хрупкости. Представьте себе жевательный мармелад — при комнатной температуре он находится в высокоэластичном состоянии. Если его охладить ниже температуры стеклования в морозильной камере, то мармелад можно будет разбить, и осколки будут как от стекла.
Максимальная рабочая температура — температура при которой полимер может работать длительное время, без существенных изменений своих свойств. Часто с ростом температуры растет ползучесть полимера, поэтому при максимальной рабочей температуре прочностные свойства снижаются.
Указанные температуры могут отличаться при определении даже для одного и того же образца, при различии методик определения.
2. Полимеры подвежены старению и разрушению. Факторами, ускоряющими процесс старения полимера являются радиация, ультрафиолетовое излучение, высокая температура, агрессивная среда. Разные полимеры в разной степени подвержены старению, кроме того, различными добавками можно снизить скорость разрушения полимера. Так, нейлоновая стяжка на силиконовом шланге с горячей водой за пару лет потеряет эластичность и станет хрупкой, в то время как силиконовый шланг по прежнему будет мягким и гибким.
Лишь очень малое количество пластиков терпят длительный нагрев свыше 100°С — фторопласт-4, каптон, peek, силиконы. Во всех остальных случаях чем выше температура эксплуатации — тем быстрее протекают процессы старения и деструкции в полимере.
3. Полимеры проницаемы для газов и некоторых растворителей. Молекулы газа очень маленькие (чем меньше атомная масса, тем меньше размер атома, самый мерзкий в этом плане водород, он даже сквозь металлы протискивается.) поэтому могут постепенно проникать сквозь разветвленную молекулярную сеть пластика. Для предотвращения этого процесса поверхность полимера покрывают слоем металла. Обратите на это внимание при вскрытии упаковки продуктов питания. Металлизация в упаковке служит этой цели — не пропустить к продукту кислород. Металлопластиковые трубы содержат слой алюминия с той же целью — не допустить проникновение кислорода в теплоноситель, это вызывает коррозию.
Материалы на базе фенолформальдегидных смол
Фенол-формальдегидные смолы, как нетрудно понять из названия — продукт поликонденсации фенола и формальдегида. Молекулы полимера образуют разветвленную трехмерную структуру, что обуславливает механические свойства — твёрдость.
Ниже рассмотрим только фенол-формальдегидные пластмассы — фенопласты. Карбамид-формальдегидные, меламин-формальдегидные пластмассы — аминопласты, рассматривать не будем, их базовые свойства идентичны, методы обработки одинаковые, разница лишь в прочности, цвете.
Химическая структура бакелита (кусочек для примера) Полимеры с такой разветвленной беспорядочной структурой обычно твёрдые и хрупкие. Автор рисунка — Dirk Hünniger, взято из Википедии
Открыл процесс поликонденсации Лео Бакеланд — американский химик бельгийского
происхождения. Он и назвал новый материал, полученный при отверждении смолы — бакелитом.
В СССР аналогичный материал назывался «карболит» — от карболовой кислоты,
старого названия фенола.
Примеры использования фенолформальдегидных смол:
Карболит (бакелит)
Представляет собой твёрдый термостойкий пластик. Если вы возьмете какое-либо устройство,
собранное до 1950 года, то практически все пластиковые детали в нем — это карболит.
Различные изделия из карболита — коробочка, розетка. Вилка, корпус вольтметра, гнезда, ручки регулировки.
Изделия получают как заливкой в формы, так и (чаще) прессованием порошка смолы с наполнителем в металлические формы с нагревом. При нагревании процесс полимеризации, уже частично начавшейся при производстве порошка, заканчивается, но, так как порошок в этот момент зажат под давлением в форме — то и вид конечного изделия повторяет форму. Серьезный недостаток такого метода в том, что нужно время, которое должно провести изделие в форме, чтобы набрать прочность, достаточную для раскрытия формы без разрушения, поэтому во многих задачах бакелит вытеснен термопластичными материалами, термопластавтомат может производить изделия заданной формы значительно быстрее.
Немного о процессе расскажет это американское рекламное видео прошлого века, оцените энтузиазм, с которым говорят о новом материале.
Корпус электросчетчика сделан из карболита.
На сегодняшний день изделия из карболита производятся массово, но он уже не так популярен как раньше, хотя есть задачи, где его заменить чем-либо трудно.
Плюшки
Стойкий к растворителям, ГСМ (Горюче-смазочным материалам). Карболитовые детали без труда работают вблизи двигателя автомобиля, в условиях нагрева, контакта с маслом, бензином.
Твёрдый. Обычно карболитовые детали можно распознать по блестящей поверхности и по твёрдости, ноготь такой пластик не царапает и даже не цепляется. Большие плоские детали почти не гнутся, а при превышении усилия со звуком «хрум» ломаются.
Хорошо обрабатывается. В отличии от многих других пластиков хорошо шлифуется. Если попробовать шлифовать, например, полипропилен, то быстро от нагрева начнет образовываться «борода» из пластика. Карболит же отлично шлифуется и часто можно видеть следы шлифовки по периметру детали — удаление облоя.
Отличный внешний вид. Способность образовывать твёрдую глянцевую поверхность особенно заметна на внешнем виде ретроаппаратуры. Даже в магазине на полке ручки для резисторов из карболита смотрятся солиднее таких же, но из термопластиков.
Недостатки
Дороговизна. Особенность производства в виде прессовки из порошка определяет довольно высокую себестоимость изделий из-за низкой скорости процесса и наличия ручного труда. Изготовление деталей из термопластиков порой в разы дешевле.
Хрупкость. Оборотная сторона твёрдости, при ударах трескается, из него не сделать
гибкий шланг, сильфон и т.д.
Практически не подлежит вторичной переработке. Есть способы, но они не получили
широкого распространения.
Ограниченная цветовая гамма. Фенолформальдегидная смола сама по себе коричневого цвета, что затрудняет получение изделий светлых цветов. Этого недостатка лишены, например, меламинформальдегидные смолы из которых делают изделия белого цвета. Замечательный фильм 40х годов, в котором видно производство фенолформальдегидной смолы, формовка деталей прессованием, получение гетинакса, текстолита, галалита и многое другое.
Гетинакс
Гетинакс — это слоистый пластик, получаемый путем прессования бумаги, пропитанной
фенольной или эпоксидной смолой. В англоязычной литературе имеет название FR-2. (от FR — Flame Resistant — огнестойкий) (FR-1, FR-2, FR-3 это всё гетинаксы, разница только в материале связующего) У нас есть ГОСТ 2718-74 на гетинакс. Имеет низкую прочность, но при этом достаточно низкую цену. Является электроизоляционным материалом, изделия из гетинакса можно получать штамповкой, поэтому панели с ламелями, вставки, изоляционные шайбы, держатели контактов иногда изготавливают из гетинакса.
Примеры применения
Материал дешевых односторонних печатных плат. В задачах, где не требуется высокая надежность и есть возможность обойтись одним проводящим слоем, печатные платы изготавливают из гетинакса. В дешевых электронных китайских игрушках чаще всего гетинаксовые платы. Гетинакс недостаточно прочен для создания надежных переходных отверстий, поэтому двухсторонние и многослойные печатные платы из гетинакса не изготавливаются.
Различные изделия из гетинакса. Пластина специально была сломана, чтобы показать характерный рисунок на изломе. Гетинаксовый брусок слегка распух справа — результат расщепления слоев при резке.
Ламинированный гетинакс (слопласт, слоистый пластик) — гетинакс с наклеенной декоративной пленкой — материал внутренней отделки автобусов, вагонов поезда, столешниц. Прочный износостойкий трудногорючий материал.
Ламели подключения обмоток трансформатора сделаны из гетинакса, изолирующая ламели от сердечника подкладка, боковины оправки обмотки — гетинакс.
Примечание
Материал непрочный и склонен давать трещины при обработке, требуется особая осторожность при обработке резанием пилами с большим зубом. В силу низкой прочности мало пригоден в качестве конструкционного материала.
Источники
Продается многими компаниями, специализирующимися на электротехнических материалов.
Гуглить по «Гетинакс ГОСТ2718-74».
Текстолит
Текстолиты — это целый класс композиционных материалов, состоят из прессованной ткани со связующим. Например, хлопчатобумажная ткань пропитанная фенолформальдегидной смолой. Имеет характерный вид — на плоскостях и срезах видно плетение ткани. Обычно коричневого и темно-коричневого цвета. Зарубежом известны под торговыми марками Novotext, Turbax, Resitex, Cerolon, Textolit, Micarta. Материал известен с 30х годов 20 века.
Текстолит различных форм — пластины, прутки. Расположение ткани в материале различается — у прутков ткань намотана, а не уложена слоями.
Примеры применения
Как конструкционный материал. Текстолит прочен и не проводит ток, поэтому используется как материал прокладок, шайб, перегородок, вставок, шестерен и т.д. При нагревании он не ползет, это выгодно отличает его от термопластичных материалов.
Поделочный материал. Из текстолита часто изготавливают рукоятки ножей, приспособления и оснастку в условиях небольших мастерских. Текстолит хорошо обрабатывается, при этом не впитывает воду, стоек к воздействию горюче-смазочных материалов.
В зависимости от использованной в производстве ткани, наблюдаемая текстура может различаться.
Текстолит из тканей с разным шагом плетения. Текстолит всегда можно узнать по характерной текстуре и виду.
Материал доступен в продаже в России, но постепенно вытесняется другими материалами.
licrym
Блог инженера
Originally published at Мир глазами инженера. You can comment here or there.
Продолжаем. На очереди диэлектрики синтетические.
Органические диэлектрики синтетические
Доступные природные материалы использовались широко, но, с развитием техники становилось всё более очевидным, что природные материалы порой полное дерьмо. Большой разброс свойств, подверженность гниению, трудности в добыче — поэтому поиски искусственных заменителей велись и ведутся всё время. Появление синтетических материалов — это революция не только техническая, но и экономическая, политическая. Вам больше не нужны колонии чтобы покрыть свои потребности в резине. Экипировка вашего солдата стала легче в несколько раз. В этом разделе — материалы, полученные «с нуля», а не попытка улучшить природные, как в предыдущем разделе.
Многие из приведенных материалов являются полимерами — материалами с длинными молекулами, состоящими из простых однотипных кирпичиков — мономеров. Полимеры можно разделить на две большие группы по их поведению при нагреве, это термопласты и реактопласты. Термопласты при нагревании плавятся, реактопласты при нагревании
разлагаются. Соответственно гору старых пластиковых игрушек из термопластов можно переплавить в новое изделие, а гору старых изделий из реактопластов так переработать не выйдет.
Полимер может состоять из чистого мономера, а может также содержать со-полимер, который встраивается в структуру молекулы. Например есть два мономера: А и Б. Молекула полимера из чистого А будет выглядеть так:
Молекула полимера из сополимеров А и Б может выглядеть так:
Введение сополимера позволяет изменить свойства пластмассы. Пример — полистирол и АБС пластик. Полистирол прозрачный хрупкий пластик, введение сополимера акрилонитрила и введение добавки из полибутадиена дает на выходе ударопрочный пластик.
Если в полимере все несимментричные звенья смотрят в одну сторону, такой полимер называется изотактическим:
Если в полимере они чередуются, то такой полимер называется синдиотактическим:
Обычно, стереорегулярность незначительно влияет на важные для электроники свойства материала, поэтому не указывается.
Общие свойства полимеров
Полимеры, благодаря своей структуре из длинных молекул, обладают некоторыми общими свойствами, которые стоит рассмотреть внимательнее.
1. Полимеры не имеют четкой температуры фазового перехода, как например металлы. Они словно карамель, с ростом температуры размягчаются, превращаясь в вязкую тягучую жидкость. Поэтому для полимеров “температура плавления” — это температура, при которой вязкость полимера уже позволяет ему течь, но это не означает, что до этой температуры он твёрдый.
Температура стеклования — это температура, ниже которой полимер из высокоэластичного состояния переходит в стеклообразное состояние, с ростом твердости и хрупкости. Представьте себе жевательный мармелад — при комнатной температуре он находится в высокоэластичном состоянии. Если его охладить ниже температуры стеклования в морозильной камере, то мармелад можно будет разбить, и осколки будут как от стекла.
Максимальная рабочая температура — температура при которой полимер может работать длительное время, без существенных изменений своих свойств. Часто с ростом температуры растет ползучесть полимера, поэтому при максимальной рабочей температуре прочностные свойства снижаются.
Указанные температуры могут отличаться при определении даже для одного и того же образца, при различии методик определения.
2. Полимеры подвержены старению и разрушению. Факторами, ускоряющими процесс старения полимера являются радиация, ультрафиолетовое излучение, высокая температура, агрессивная среда. Разные полимеры в разной степени подвержены старению, кроме того, различными добавками можно снизить скорость разрушения полимера. Так, нейлоновая стяжка на силиконовом шланге с горячей водой за пару лет потеряет эластичность и станет хрупкой, в то время как силиконовый шланг по прежнему
будет мягким и гибким.
Лишь очень малое количество пластиков терпят длительный нагрев свыше 100°С — фторопласт-4, каптон, peek, силиконы. Во всех остальных случаях чем выше температура эксплуатации — тем быстрее протекают процессы старения и деструкции в полимере.
3. Полимеры проницаемы для газов и некоторых растворителей. Молекулы газа очень маленькие (чем меньше атомная масса, тем меньше размер атома, самый мерзкий в этом плане водород, он даже сквозь металлы протискивается.) поэтому могут постепенно проникать сквозь разветвленную молекулярную сеть пластика. Для предотвращения этого процесса поверхность полимера покрывают слоем металла. Обратите на это внимание при вскрытии упаковки продуктов питания. Металлизация в упаковке служит этой цели — не
пропустить к продукту кислород. Металлопластиковые трубы содержат слой алюминия с той же целью — помимо армирования не допустить проникновение кислорода в теплоноситель, это вызывает коррозию оборудования (котлов, теплообменников и т.д.).
Материалы на базе фенолформальдегидных смол
Фенол-формальдегидные смолы, как нетрудно понять из названия — продукт поликонденсации фенола и формальдегида. Молекулы полимера образуют разветвленную трехмерную структуру, что обуславливает механические свойства — твёрдость.
Ниже рассмотрим только фенол-формальдегидные пластмассы — фенопласты.
Карбамид-формальдегидные, меламин-формальдегидные пластмассы — аминопласты,
рассматривать не будем, их базовые свойства идентичны, методы обработки одинаковые, разница лишь в прочности, цвете.
Химическая структура бакелита (кусочек для примера) Полимеры с такой разветвленной беспорядочной структурой обычно твёрдые и хрупкие. Автор рисунка — Dirk Hünniger, взято из Википедии
Открыл процесс поликонденсации Лео Бакеланд — американский химик бельгийского происхождения. Он и назвал новый материал, полученный при отверждении смолы — бакелитом. В СССР аналогичный материал назывался “карболит” — от карболовой кислоты, старого названия фенола.
Примеры использования фенолформальдегидных смол:
Как самостоятельный материал в чистом виде в качестве клеев, лаков.
С порошковыми наполнителями (придающими прочность или разбавляющими материал
просто для экономии) и без — карболит/бакелит
С наполнением из стекловолокна в хаотичном порядке — волокниты, например прессматериал АГ-4В
С наполнением из слоев хлопчатобумажной ткани — Текстолиты
С наполнением из стеклоткани — Стеклотекстолиты
С наполнением из слоев проклееной бумаги — Гетинакс
Карболит (бакелит)
Представляет собой твёрдый термостойкий пластик. Если вы возьмете какое-либо устройство, собранное до 1950 года, то практически все пластиковые детали в нем — это карболит.
Различные изделия из карболита — коробочка, розетка. Вилка, корпус вольтметра, гнезда, ручки регулировки.
Изделия получают как заливкой в формы, так и (чаще) прессованием порошка смолы с наполнителем в металлические формы с нагревом. При нагревании процесс полимеризации,
уже частично начавшейся при производстве порошка, заканчивается, но, так как порошок в этот момент зажат под давлением в форме — то и вид конечного изделия повторяет форму. Серьезный недостаток такого метода в том, что нужно время, которое должно провести изделие в форме, чтобы набрать прочность, достаточную для раскрытия формы без разрушения, поэтому во многих задачах бакелит вытеснен термопластичными материалами, термопластавтомат может производить изделия заданной формы значительно быстрее.
Корпус электросчетчика сделан из карболита.
Немного о процессе расскажет это американское рекламное видео прошлого века, оцените энтузиазм, с которым говорят о новом материале.
На сегодняшний день изделия из карболита производятся массово, но он уже не так популярен как раньше, хотя есть задачи, где его заменить чем-либо трудно.
Плюшки
Стойкий к растворителям, ГСМ. Карболитовые детали без труда работают вблизи двигателя автомобиля, в условиях нагрева, контакта с маслом, бензином.
Твёрдый. Обычно карболитовые детали можно распознать по блестящей поверхности и по твёрдости, ноготь такой пластик не царапает и даже не цепляется. Большие плоские детали почти не гнутся, а при превышении усилия со звуком “хрум” ломаются.
Хорошо обрабатывается. В отличии от многих других пластиков хорошо шлифуется. Если попробовать шлифовать, например, полипропилен, то быстро от нагрева начнет образовываться “борода” из пластика. Карболит же отлично шлифуется и часто можно видеть следы шлифовки по периметру детали — удаление облоя.
Отличный внешний вид. Способность образовывать твёрдую глянцевую поверхность особенно заметна на внешнем виде ретроаппаратуры. Даже в магазине на полке ручки для резисторов из карболита смотрятся солиднее таких же, но из термопластиков.
Недостатки
Дороговизна. Особенность производства в виде прессовки из порошка определяет довольно высокую себестоимость изделий из-за низкой скорости процесса и наличия ручного труда. Изготовление деталей из термопластиков порой в разы дешевле.
Хрупкость. Оборотная сторона твёрдости, при ударах трескается, из него не сделать гибкий шланг, сильфон и т.д.
Практически не подлежит вторичной переработке. Есть способы, но они не получили широкого распространения.
Ограниченная цветовая гамма. Фенолформальдегидная смола сама по себе коричневого цвета, что затрудняет получение изделий светлых цветов. Этого недостатка лишены, например, меламинформальдегидные смолы из которых делают изделия белого цвета.
Замечательный фильм 40х годов, в котором видно производство фенолформальдегидной смолы, формовка деталей прессованием, получение гетинакса, текстолита, галалита и многое другое.
Гетинакс
Гетинакс — это слоистый пластик, получаемый путем прессования бумаги, пропитанной фенольной или эпоксидной смолой. В англоязычной литературе имеет название FR-2. (FR — Flame Resistant — огнестойкий) (FR-1, FR-2, FR-3 это всё гетинаксы, разница только в материале связующего) У нас есть ГОСТ 2718-74 на гетинакс.
Имеет низкую прочность, но при этом достаточно низкую цену. Является электроизоляционным материалом, изделия из гетинакса можно получать штамповкой, поэтому панели с ламелями, вставки, изоляционные шайбы, держатели контактов иногда изготавливают из гетинакса.
Примеры применения
Материал дешевых односторонних печатных плат. В задачах, где не требуется высокая надежность и есть возможность обойтись одним проводящим слоем, печатные платы изготавливают из гетинакса. В дешевых электронных китайских игрушках чаще всего гетинаксовые платы. Гетинакс недостаточно прочен для создания надежных переходных отверстий, поэтому двухсторонние и многослойные печатные платы из гетинакса не изготавливаются.
Различные изделия из гетинакса. Пластина специально была сломана, чтобы показать характерный рисунок на изломе. Гетинаксовый брусок слегка распух справа — результат расщепления слоев при резке. Ламели подключения обмоток трансформатора сделаны из гетинакса, изолирующая ламели от сердечника подкладка, боковины оправки обмотки — гетинакс.
Ламинированный гетинакс (слопласт, слоистый пластик)> — гетинакс с наклеенной декоративной пленкой — материал внутренней отделки автобусов, вагонов поезда, столешниц. Прочный износостойкий трудногорючий материал.
Примечание
Материал непрочный и склонен давать трещины при обработке, требуется особая осторожность при обработке резанием пилами с большим зубом. В силу низкой прочности мало пригоден в качестве конструкционного материала.
Источники
Продается многими компаниями, специализирующимися на электротехнических материалов. Гуглить по «Гетинакс ГОСТ2718-74».
Текстолит
Текстолиты — это целый класс композиционных материалов, состоят из прессованной ткани со связующим. Например, хлопчатобумажная ткань пропитанная фенолформальдегидной смолой. Имеет характерный вид — на плоскостях и срезах видно плетение ткани. Обычно коричневого и темно-коричневого цвета. Зарубежом известны под торговыми марками Novotext, Turbax, Resitex, Cerolon, Textolit, Micarta. Материал известен с 30х годов 20 века.
Примеры применения
Как конструкционный материал. Текстолит прочен и не проводит ток, поэтому используется как материал прокладок, шайб, перегородок, вставок, шестерен и т. д. При нагревании он не ползет, это выгодно отличает его от термопластичных материалов.
Поделочный материал. Из текстолита часто изготавливают рукоятки ножей, приспособления и оснастку в условиях небольших мастерских. Текстолит хорошо обрабатывается, при этом не впитывает воду, стоек к воздействию горюче-смазочных материалов.
Текстолит различных форм — пластины, прутки. Расположение ткани в материале различается — у прутков ткань намотана, а не уложена слоями.
В зависимости от использованной в производстве ткани, наблюдаемая текстура может различаться.
Текстолит из тканей с разным шагом плетения. Текстолит всегда можно узнать по характерной текстуре и виду.
Шестерня изготовленная из текстолита.
Материал доступен в продаже в России, но постепенно вытесняется другими материалами.
Стеклотекстолит
Разновидность текстолита, в которой используется стеклоткань и чаще всего эпоксидная смола. Обычно светло желтого цвета. Широко распространенный композиционный материал, сочетает в себе легкость, прочность, упругость, не гниет, трудногорюч.
В виде листов — основной материал печатных плат, имеет за рубежом название FR-4. Достаточно прочный и стабильный для изготовления многослойных печатных плат. Вне формы листов часто имеет в назвнии слово fiberglass — стеклопластик.(Дословно fiberglass — “стекловолокно”, но часто подразумевается именно пластик со стекловолокном.)
Примеры применения
Основной материал для изготовления печатных плат. Выпускается уже с заранее наклеенной медной фольгой с одной или с двух сторон, именуется “Стеклотекстолит фольгированный ГОСТ 10316-78”.
Заготовки печатных плат из 1,5 мм фольгированного стеклотекстолита.
Конструкционный материал. В виде листов различной толщины “Стеклотекстолит конструкционный ГОСТ 10292-74” Оправки катушек, держатели электродов, корпусные элементы.
Обрезки листового стеклотекстолита различной толщины. Деталь на переднем плане специально была сломана — на изломе виден текстильный материал.
Электроизоляционный материал. В качестве прокладок, сепараторов, держателей, защитных пластин.
Что стоит добавить
Стеклотекстолит и стеклопластики вообще — очень интересные материалы. Стеклопластиковая арматура при падении на бетонный пол звенит, что говорит о высокой упругости материала. Материал легче стали, при этом во многом сопоставим с ней по прочности.
Материал анизотропен. Так как он слоистый, при нагрузке перпендикулярно слоям он значительно прочнее, чем при нагрузке направленной на разделение слоев. При изготовлении изделий путем формования стеклоткани с эпоксидной смолой это учитывают при выборе направлений укладки ткани.
Материал обманчиво легко обрабатывается. Легко режется ножовкой, пилится напильником, сверлится. Но стеклянные волокна в составе очень быстро изнашивают рабочую кромку инструмента. Обычные сверла из быстрорежущей стали тупятся уже после двух-трёх десятков отверстий, поэтому стеклотекстолит на производстве печатных плат сверлится твёрдосплавными сверлами из карбида вольфрама. Но сверла эти очень хрупкие и сверлить ими возможно только в станке.
Материал разрушается необратимо, этим поведением (как и треском при разрыве волокон) сильно напоминает дерево. Если стальная деталь при превышении нагрузки погнется, то её можно при помощи молотка и какой-то там матери выправить обратно, то стеклопластиковая деталь при превышении нагрузки с треском теряет форму и ремонту не подлежит, только замене.
Стеклотекстолит не гниет, стоек к атмосферным воздействиям (однако может расслаиваться из-за замерзания попавшей в случайные поры воды зимой) и прозрачен для
радиоволн. Поэтому из него делают различные обтекатели для антенн, кожухи, корпуса. Оборотная сторона медали — материал не подлежит переработке. Вообще, отправляется на свалку и будет лежать там столетиями.
Изготовление изделий сложной формы — неавтоматизируемый процесс с обилием ручного труда. Правильно разложить ткань, подрезать, расправить складки, нанести смолу, выгнать пузыри воздуха — всё вручную. Поэтому изделия из стеклопластиков, из карбона (ткань из углеродного волокна) дорогие и вряд ли когда-то станут дешевле. Это собственно и поставило крест на стеклопластиковых кузовах массовых авто — долго, дорого их производить и не переработать в металлолом потом, хотя такой кузов почти вечный и не заржавеет. Некоторые изделия получают автоматизированной намоткой стеклонити — газовые баллоны, арматуру для бетона.
При обработке стеклотекстолита обязательно одевайте респиратор, частички стекловолокна в составе попадая в легкие наносят вред здоровью. Также они достаточно абразивные, поэтому при обработке стеклотекстолита на станках примите меры для защиты направляющих.
Лакоткань
Лакоткань — гибкий электроизоляционный материал, состоит из ткани (хлопчатобумажная, синтетическая, стеклоткань) пропитанной эластичным связующим (лаки, смолы). Есть ГОСТ 28034-89 на лакоткани.
Кусочек лакоткани. Часто можно встретить в трансформаторах.
Так как слой ткани всего один — лакоткань гибкая и прочная, и зачастую полупрозрачная. Иногда связующее специально делают липким, слои такой ткани хорошо слипаются образуя со временем почти монолитный слой.
Применяется часто для изоляции слоев обмоток в трансформаторах, в обмотках электромоторов, генераторов.
Резина
Эластичный материал, получаемый вулканизацией каучука. Вообще часто резиной называют любой эластичный материал, не акцентируя на разницу в составе, хотя силиконовая резина от изопреновой отличается довольно сильно.
До изобретения вулканизации природный каучук был специфическим материалом — липким на жаре, ломким на холоде, непрочным. Открытие вулканизации Гудиером
позволило лишить резину природных недостатков. Если в исходное сырьё ввести 1–2% серы, то при нагревании между молекулами каучука образуются мостики через атомы серы, в результате чего резина становится упругой, эластичной. Если ввести много серы (30%), то мостиков будет так много, что резина станет твёрдой, получится материал под названием эбонит. Регулируя степень вулканизации можно регулировать свойства материала в широких пределах.
Удивительно, до сих пор около 40% рынка резинового сырья занимает натуральный каучук, и большая часть натурального сырья идет на производство покрышек.
Кабель в резиновой изоляции, поликлиновой приводной ремень, уплотнительные кольца — изделия из резины.
Примеры применения
Изоляция проводов. Повод в резиновой изоляции обладает рядом преимуществ перед собратом с изоляцией из ПВХ, резина на морозе дубеет не так сильно, не плавится. Нагревательные приборы, не исключающие контакт с питающим проводом, имеют провод из термостойкой изоляции, например, утюги. Удлинитель из провода в резиновой изоляции — хорошее решение для тяжелых условий эксплуатации. К сожалению медные жилы такого провода очень часто окисляются, что осложняет монтаж. Резиновая изоляция обладает невысокой атмосферостойкостью, изоляция кабеля пролежавшего под открытым небом покрывается трещинами и может вызвать короткое замыкание.
Уплотнения. Резиновые колечки, прокладки, манжеты, часто не только обеспечивают герметичность, но и устраняют неприятные люфты и вибрации в изделиях.
Приводные ремни. Гибкие ремни круглого (пассики), квадратного, плоского, клинового, поликлинового сечений, зубчатые… и множество других форм. Предназначены для передачи вращения в разных механизмах, например от вала электродвигателя на реечный привод выдвижения лотка у DVD дисковода.
Средства защиты от напряжения. Резиновые перчатки, боты, коврики — всё для защиты электрика от удара электрическим током.
Эбонит
Эбонит — представляет собой высоко-вулканизированный каучук с большим (до 30%) содержанием серы, за счет чего, в отличии от привычной резины, обладает твёрдостью. Есть ГОСТ 2748-77 на эбонит.
Эбонитовый пруток. Я сточил часть прутка для видимости самого материала.
Примеры применения
Электроизоляционный материал. До широкого распространения синтетических пластиков был в ходу, сейчас полностью вытеснен пластиками, превосходящими его по свойствам.
Поделочный материал — рукоятки ножей, мундштуки трубок, декоративные элементы.
Демонстрация явления трибоэлектричества — школьный опыт, когда эбонитовая палочка от натирания мехом электризуется и начинает притягивать к себе нарезанные кусочки бумаги считается классическим, и описан во многих учебниках. В данном опыте эбонит не обладает какими-либо исключительными свойствами, просто исторически так сложилось, что до открытия других полимерных материалов эбонит был одним из самых доступных прочных диэлектриков. При демонстрации опыта можно смело заменить эбонитовую палочку на палочку из любого другого диэлектрика.