что плохо проводит электрический ток

Классификация материалов по отношению к способности проводить электрический ток

При появлении в нашей жизни электричества, мало кто знал о его свойствах и параметрах, и в качестве проводников использовали различные материалы, было заметно, что при одной и той же величине напряжения источника тока на потребителе было разное значение напряжения. Было понятно, что на это влияет вид материала применяемого в качестве проводника. Когда ученные занялись вопросом по изучению этой проблемы они пришли к выводу, что в материале носителями заряда являются электроны. И способность проводить электрический ток обосабливается наличием свободных электронов в материале. Было выяснено, что у некоторых материалов этих электронов большое количество, а у других их вообще нет. Таким образом существуют материалы, которые хорошо проводят электрический ток, а некоторые не обладают такой способностью.
Исходя из всего выше сказанного, все материалы поделились на три группы:

Каждая из групп нашла широкое применение в электротехнике.

Проводники

Проводниками являются материалы, которые хорошо проводят электрический ток, их применяют для изготовления проводов, кабельной продукции, контактных групп, обмоток, шин, токопроводящих жил и дорожек. Подавляющее большинство электрических устройств и аппаратов выполнена на основе проводниковых материалов. Мало того, скажу, что вся электроэнергетика не могла б существовать не будь этих веществ. В группу проводников входят все металлы, некоторые жидкости и газы.

Так же стоит упомянуть, что среди проводников есть супер проводники, сопротивление которых практически равно нулю, такие материалы очень редки и дороги. И проводники с высоким сопротивлением — вольфрам, молибден, нихром и т.д. Такие материалы используют для изготовления резисторов, нагревательных элементов и спиралей осветительных ламп.

Но львиная доля в электротехнической сфере принадлежит рядовым проводникам: медь, серебро, алюминий, сталь, различные сплавы этих металлов. Эти материалы нашли самое широкое и огромное применение в электротехнике, особенно это касается меди и алюминия, так как они сравнительно дешевы, и их применение в качестве проводников электрического тока наиболее целесообразно. Даже медь ограничена в своем использовании, её применяют в качестве обмоточных проводов, многожильных кабелях, и более ответственных устройствах, еще реже встречаются медные шинопроводы. А вот алюминий считается королем среди проводников электрического тока, пускай он обладает более высоким удельным сопротивлением чем медь, но это компенсируется его весьма низкой стоимостью и устойчивостью к коррозии. Он широко применяется в электроснабжении, в кабельной продукции, в воздушных линиях, шинопроводах, обычных проводах и т.д.

Полупроводники

Полупроводники, что-то среднее между проводниками и полупроводниками. Главной их особенностью является их зависимость проводить электрический ток от внешних условий. Ключевым условием является, наличие различных примесей в материале, которые как раз-таки обеспечивают возможность проводить электрический ток. Так же при определенной компоновку двух полупроводниковых материалов. На основе этих материалов на данный момент, произведено множество полупроводниковых устройств: диоды, светодиоды, транзисторы, семисторы, тиристоры, стабисторы, различные микросхемы. Существует целая наука, посвященная полупроводникам и устройствам на их основе: электронная техника. Все компьютеры, мобильные устройства. Да что там говорить, практически вся наша техника содержит в себе полупроводниковые элементы.

К полупроводниковым материалам относят: кремний, германий, графит, гр афен, индий и т.д.

Диэлектрики

Ну и последняя группа материалов, это диэлектрики, вещества не способные проводить электрический ток. К таким материалам относят: дерево, бумага, воздух, масло, керамика, стекло, пластмассы, полиэтилен, поливинилхлорид, резина и т.д. Диэлектрики получили широкое применение благодаря своим качествам. Их применяют в качестве изолирующего материала. Они предохраняют соприкосновение двух токоведущих частей, не допускают прямого прикосновения человека с этими частями. Роль диэлектриком в электротехнике не менее важна чем роль проводников, так как обеспечивают стабильную, безопасную работу всех электротехнических и электронных устройств. У всех диэлектриков существует предел, до которого они не способны проводить электрический ток, его называют пробивным напряжением. Это такой показатель, при котором диэлектрик начинает пропускать электрический ток, при этом происходит выделение тепла и разрушение самого диэлектрика. Это значение пробивного напряжения для каждого диэлектрического материала разное и приведено в справочных материалах. Чем он выше, тем лучше, надежней считается диэлектрик.

Параметром, характеризующим способность проводить электрический ток является удельное сопротивление R, единица измерения [Ом] и проводимость, величина обратная сопротивлению. Чем выше этот параметр, тем хуже материал проводит электрический ток. У проводников он равен от нескольких десятых, до сотен Ом. У диэлектриков сопротивление достигает десятков миллионов ом.

Все три вида материалов нашли широкое применение в электроэнергетике и электротехнике. А так же тесно взаимосвязаны друг с другом.

Источник

Диэлектрики

Все вещества по-разному проводят электрический ток. Это объясняется тем, что у каждого вещества свои свойства, свой набор атомов и соответственно молекул. Это влияет на плотность вещества, количество валентных электронов и энергетических уровней.

Электрические диэлектрики. Какие они?

Как нас учили в школе, некоторые вещества плохо проводят электрический ток, а некоторые хорошо. Например, дерево очень плохо проводит, а вот алюминий проводит в разы лучше. Так вот, если вспомнить терминологию, то вещества, проводящие электричество хорошо, называются проводниками, а те, что его проводят плохо, называются… Ну как же их? Ах да, они называются электрическими диэлектриками.

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический ток

Конечно мы не говорим о том, что они совсем ток не проводят, нет. Они, конечно же являются проводниками, просто сравнительно довольно плохими. Диэлектрики с другой стороны еще и вещества, которые могут довольно долго хранить в себе электрическое поле, причем на это не нужна будет внешняя энергия.

Что будет, если воздействовать извне?

Если приложить к электрическому диэлектрику внешнее электрическое поле, то свободные заряды диэлектрика начнут постепенно нейтрализовывать его. Причем, это будет происходить до тех пор, пока не закончатся электроны или результирующее поле не станет равным нулю.

Чтобы понять то какие вещества вообще могут взаимодействовать с электрическими полями, нам нужно разобраться в таком термине, как электропроводность. Если говорить простым языком, то для взаимодействия с электрическим полем у вещества должна быть довольно низкая электропроводность.

Если мы будем говорить точнее, то удельное сопротивление должно быть сравнимо с 1010 Q-см или даже сильно превосходило это значение.

А откуда берется низкая электропроводность?

Как мы знаем из базовой программы по физике, все вещества состоят из атомов. И эти атомы очень активно взаимодействуют друг с другом. У каждого из них есть свой заряд, и благодаря зарядам атомы так или иначе взаимодействуют.

Однако, как же создается такая низкая электропроводность? Вроде же есть атомы, они как-то там взаимодействуют и ток по ним мог бы идти, но не все так просто. Залогом того, чтобы проводимость вещества была низкой, выступает очень важный факт.

Если при наложении поля электроны, ионы и другие частицы не смогут свободно перемещаться или будут это делать очень плохо, то и электропроводность будет низкая, ведь все будет стоять на своих местах и свободным электронам будет просто некуда деться.

Кристаллическая решетка поможет разобраться

Сейчас в познании электрических диэлектриков нам поможет разобраться кристаллическая решетка. Для того, чтобы термины не казались нам непонятными, давайте их освежим в своей голове. Кристаллическая решетка — это группа таких точек, которые образуются в веществах (а точнее в кристаллах) под воздействием сдвигов (они, кстати, могут происходить из-за воздействия электрического поля. Отлично, вспомнили. Давайте теперь разбираться.

Как мы помним, в атоме, который в данный момент изолирован, энергия электронов не может принимать какие угодно значения. В таком состоянии энергия будет принимать четко обозначенные значение W1, W2, W3 и т.д. Вот, взгляните на график:

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический ток

Конечно же, каждый из этих уровней будет немного смещен после того, как атомы войдут в состав твердой кристаллической решетки. В итоге зона, в которой будет концентрировать вся энергия будет общей для всей решетки.

Итак, в кристаллической решетке энергия электронов лежит в пределах четко определенных зон и все значения, которые находятся вне этой зоны, запрещены. Это мы поняли. Двигаемся дальше. По принципу Паули каждая зона может вместить в себя ограниченное количество электронов. Сначала электроны будут заполнять нижние уровни, а когда эти ряды заполняться полностью, они будут заполнять верхние ряды.

И вот теперь ключевая мысль, которую нужно понять, чтобы разобраться в том, почему те или иные вещества проводят электрический ток. Раз электроны постепенно заполняют ряды от нижнего к верхнему, то на самом верхнем ряду они либо заполнят этот ряд полностью, либо только частично.

Так вот, при частичном заполнении ряда электроны смогут свободно по нему перемещаться, а значит и будут проводить ток. Бинго! А вот в случае, если электроны все-таки заполнят верхний уровень, то при воздействии электрического поля никаких сдвигов не произойдет и, соответственно, такое вещество можно назвать диэлектриком.

Очень похожая ситуация происходит и с аморфными твердыми телами (ну например янтарь или полиэтилен). По определению, у таких веществ расположение атомов очень случайно, а зоны, общие для всего кристалла просто не могут существовать, а значит они тоже электрические диэлектрики.

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический токТочно, кроме электронов же еще есть ионы, и они тоже могут повлиять на конечную ситуацию. Их тепловое движение состоит в том, что они колеблются где-то около положения равновесия. Однако интересно то, что некоторые из них все же способны вырваться и преодолеть то, что их сдерживает.

Такие ионы можно условно называть свободными. Они перемещаются в места, где потенциальная энергия их будет очень мала. Если мы говорим об электрических диэлектриках (а мы все еще о них говорим), то такие места в плотной кристаллической решетке для них — это узлы.

Так вот, согласно теории Вальтера Шоттки, такое может происходить только тогда, когда некоторое количество узлов в решетке уже занято ионами. В физике часто называют такие узлы “дырками”. Тогда тепловое движение будет сводиться к беспорядочному перескакиванию ионов с одного узла на другой.

Диэлектрик раз и навсегда?

Когда мы называем то или иное вещество диэлектриком, мы должны понимать, что это название довольно-таки условное, ведь при определенном воздействии на вещество оно уже может потерять свойства диэлектрика. Почему так происходит?

Дело в том, что электрический ток воздействует на вещество лишь очень короткий отрезок времени, из-за чего поле в нем тоже возникает ненадолго. Поэтому, даже вещества с очень низким удельным сопротивлением можно тоже считать диэлектриком при определенных условиях.

Хорошим примером будет дистиллированная вода. А вот если напряжение будет очень долго воздействовать на вещество, то его уже можно смело называть проводником. Вот такая магия.

Аморфные диэлектрики. Какие они?

Чем особенны аморфные диэлектрики? Главное, что отличает их от других — это довольно рыхлая структура, а значит очень много пустот внутри и большое пространство, где ионы могут находится в состоянии равновесия. При этом, при переходе от одного равновесного состояния до другого энергия, расходуемая ионом будет всегда разной. В некоторых переходах ион не будет полностью высвобождаться от сдерживающих его сил, поэтому можно его условно охарактеризовать как наполовину связанный этими силами.

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический ток

Такие переходы будут тратить очень небольшое количество энергии, и перемещаться ион при таких переходах сможет лишь на очень небольшое расстояние. В результате теплового перемещения такие переходы внутри аморфных тел будут встречаться гораздо чаще, ведь они требуют гораздо меньше энергии, чем другие.

Однако, небольшое количество ионов, которые содержат в себе большие запасы энергии, смогут таки преодолевать связывающие их силы и будут перемещаться на сравнительно большие расстояния.

Если провести аналогию с кристаллической решеткой, то как раз эти ионы и можно назвать свободными. Как мы с вами теперь выяснили, в целом такая обстановка при движении ионов в аморфных телах идентична твердым, но с небольшими оговорками.

Помещаем в постоянное поле

Теперь давайте немного отойдем от того, какие вещества могут быть диэлектриками и какие не могут ими быть, тем более что мы уже достаточно хорошо разобрались в этом вопросе.

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический ток

Давайте попробуем сейчас ответить на такой интересный вопрос: что же будет, если диэлектрик поместить в постоянное электрическое поле? Сначала давайте дадим краткий ответ, а потом уже разберемся в этом вопросе более подробно. Так вот, если поместить диэлектрик в электрическое поле, то заряды диэлектрика, из которых он состоит будут под воздействием некоторых сил, которые будут:

Что будет давать упорядоченное перемещение

При упорядочивании зарядов диэлектрика есть целых два варианта развития событий:

Поговорим о поляризации

Следующий важный термин, о котором пришло время узнать — это поляризация диэлектриков. Дело в том, что процессы смещения зарядов диэлектрика протекают с разной скоростью. Как мы уже сказали ранее, для связанных зарядов время смещения гораздо меньше, а вот другие процессы протекают очень медленно.

При смещении зарядов диэлектрика образуется еще одно поле. Оно как раз и делает главное (внешнее) поле слабее. Как раз явление образования нового поля и называется поляризацией диэлектрика. Теперь давайте углубимся в этот процесс, ведь тут очень много интересных подробностей.

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический ток

Для начала давайте поймем, почему новое поле появляется именно при смещении. Тут как раз все просто, ведь теперь из беспорядочного состояния диэлектрик становится более упорядоченным — отрицательные заряды теперь расположены левее своих положительных зарядов. Как раз это и создает новое поле.

Проницаемость диэлектрика

А как же измерить, насколько внутреннее поле ослабевает внешнее? Что-ж, здесь все очень просто. Такая мера называется электрическая проницаемость или проницаемость диэлектрика (наверняка вы уже слышали такой термин). Обычно говорят, что проницаемость диэлектрика это постоянная, но на самом деле в связи с тем, что поляризация протекает довольно долго, будем говорить, что эта величина зависит от времени действия внешнего поля.

Как на проницаемость диэлектрика влияет температура?

Но только ли время влияет на электрическую проницаемость. Выясняется, что не только. Оказывается, если увеличить температура, то вместе с этим еще и увеличивается интенсивность теплового движения, а это, как вы понимаете, напрямую влияет на проницаемость диэлектрика. Почему? Все просто: переход в устойчивое состояние становится более сложным, а поэтому диэлектрическая проницаемость с увеличением температуры становится все меньше.

Пробой диэлектрика

Помните мы в данной статье уже говорили о том, что у каждого диэлектрика есть свой предел и что нельзя однозначно называть вещество диэлектриком и нужно рассматривать его в динамике. Так вот, давайте вернемся к этой теме и немного углубимся в нее. Знаете ли вы, что происходит при поляризации?

Дело в том, что при этом явлении начинается такое состояние, называемое стационарным или же квазистанционырным, если воздействие напряжения извне переменное. Такое состояние отличается от обычного тем, что значения поляризации могут очень долго держаться на одном уровне. Вместе с ними стабилизируется и электропроводность.

Если сразу же начать увеличивать напряженность в таком поле, то можно будет очень точно определить тот предел, при котором эта самая стабильность будет резко нарушаться. Сразу же увеличиться ток, электропроводность, а это уже прямой путь из диэлектрика в проводники. Действительно, после этого вещество уже нельзя охарактеризовать, как диэлектрик. Такой процесс перехода диэлектрика в проводники называется пробоем диэлектрика.

Когда мы поняли, что такое пробой, давайте теперь поймем, как можно легко определить, в какой момент пробой диэлектрика происходит. Как мы можем понять, временной порог пробоя может зависеть от температуры, агрегатного состояния вещества и многих других факторов, тут важно другое. Давайте разберем основные случаи пробоя, их всего лишь два, поэтому не пугайтесь:

Поле в диэлектрике

Как мы уже поняли, поле в диэлектрике направлено ровно против внешнего электрического поля. Но этих знаний нам не хватит, чтобы хорошо разбираться в диэлектриках.

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический ток

Поэтому давайте немного углубимся в эту тему. Напомним, что поляризация диэлектрика — это когда заряды перенаправляются так, что минусы смотря в одну сторону, а плюсы — в другую. Так вот, давайте же разберемся в видах поляризации.

Деформационная (или же электронная)

Этот вид поляризации интересует нас больше всего. Стоит отметить, что такая поляризация характерна для веществ, состоящих из неполярных молекул, то есть у которых нет дипольных моментов. Что происходит? Все просто — главное, что нужно понять, это то, что смещаются электронные оболочки. При этом, положительно заряженные атомные ядра смещаются по направлению к внешнему полю, а отрицательно заряженные электронные оболочки — против поля.

Дипольная (или же ориентационная)

Это один из наиболее распространенных видов поляризации. Однако здесь все с точностью до наоборот. Здесь уже меняют ориентацию диполи. Здесь все еще просто — когда поле снаружи не воздействует на вещество, порядок у диполей абсолютно хаотичен, но когда внешнее поле начинает воздействовать на вещество, то абсолютно все диполи разворачиваются положительной стороной к полю, которое на него воздействует. Как мы уже разбирались выше, стабильность положения диполей определяется напряженностью поля и температурой вещества.

Ионная

Да, этот вид поляризации мы тоже не забыли. Здесь речь идет о смещении положительной решетки ионов. Они расположатся вдоль поля, а отрицательные — против.

Так почему же в самом начале мы сказали, что нас больше всего будет интересовать именно первый вид поляризации, если мы будет рассматривать положительные заряды? Все просто. Положительные заряды играют какую-то роль только при таком воздействии внешнего поля на вещество. Поэтому можете считать, что вы уже знаете о них все, что нужно.

Плоский диэлектрик

Почему-то многие иногда называют диэлектрик внутри плоского конденсатора. Быть может, так его называть просто удобнее. На самом деле, плоский конденсатор — это очень интересное устройство, поэтому поговорим о нем и о его диэлектрике (плоском диэлектрике раз уж на то пошло).

Раз уж мы говорим о конденсаторе, то давайте сразу же научимся определять его емкость (или же емкость диэлектрика). Для этого воспользуемся этой прекрасной формулой:

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический ток

Давайте поймем, что здесь означает каждая из букв. S — это, очевидно, площадь обкладок данного плоского конденсатора. Буква d обозначает расстояние между обкладками, а остальные две переменные — это диэлектрическая проницаемость диэлектрика (плоского диэлектрика) и электрическая постоянная (если кто-то из вас подзабыл, 8,854 пФ/м)

Странно, но сейчас плоские конденсаторы встречаются очень редко. Возможно, это связано с пленочными технологии, которые настолько микроскопически, что делать их довольно сложно и дорого.

Почему плоский с конденсатор с диэлектриком не могут друг без друга?

Ответ на этот вопрос не так уж сложен. Все дело в том, что от диэлектрика зависит самый важный и основной элемент в плоском конденсаторе — его емкость. Давайте поговорим о том, как это работает. Как мы знаем, аморфное вещество состоит из диполей, которые, в свою очередь, укреплены на своих местах и хаотично ориентированы.

Когда поле извне воздействует на это самое аморфное вещество, диполи разворачиваются вдоль силовых линий это внешнего поля. При этом, поле ослабевает, а заряд постепенно накапливается, пока поле не перестанет действовать. И так длится цикл за циклом. Именно поэтому плоский конденсатор с диэлектриком можно рассматривать только вместе.

Как не путать проводники и диэлектрики

До этого мы с вами очень подробно рассмотрели диэлектрики, узнали, как они работают, как устроены внутри. Теперь же давайте узнаем, как они используются в реальной жизни и как не спутать их с проводниками.

Где применяются диэлектрики

Диэлектрики применяются во многих сферах жизни, а именно в тех, где нужен электрический ток.

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический ток

Особенно активно их используют в сельском хозяйстве, промышленности и приборостроении.

Твердые диэлектрики

Диэлектрики бывают разные. Например, твердые диэлектрики могут обеспечивать безопасность приборов, работающий на электричестве. Они являются хорошими изоляторами тока, а значит очень сильно влияют на долговечность этих приборов. Одним из примеров можно назвать диэлектрические перчатки.

Жидкие диэлектрики

А вот диэлектрики жидкие нужны немного для другого. Они то используются в конденсаторах, кабелях, системах охлаждения с циркуляцией воздуха и во многих других приборах.

Газообразные диэлектрики

Также существуют и газообразные диэлектрики, хоть они и не так популярны в наши дни. Эти диэлектрики создала сама природа. Например, водород используется для мощных генераторов, у которых просто запредельная теплоемкость, а вот азот помогает по максимуму сократить окислительные процессы. Самым же простым примером газообразного диэлектрика мы считаем воздух. Да-да, это тоже диэлектрик, причем еще и тепло может отводить.

Источник

Руководство по материалам электротехники для всех. Часть 1

Привет гиктаймс! Я решил опубликовать по частям свое руководство по материалам, используемым не только в электротехнике, но и вообще в технике, в том числе самодельщиками. С описанием, примерами применения, заметками по работе. Руководство написано максимально просто, и будет понятно всем, от школьника до пенсионера.

В этой части начинаем разбирать проводники — Серебро, Медь, Алюминий.

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический ток

Добро пожаловать под кат (ТРАФИК)

Введение, которое обычно никто не читает

Ковыряясь в поисках ответов на свои вопросы в разных учебниках по материаловедению, методичках, научпоп книгах я ужасался, насколько академический стиль изложения возводит стену между желающим узнать и знаниями. Насколько стремление авторов обойти острые грани, тёмные места превращает учебники в однородную бескрайнюю пустыню скуки и отчаяния. При этом запредельный уровень абстракции делает крайне сложным для неофита использование полученных знаний в практике. Поэтому я решил сделать свое руководство, с блекджеком и блудными девицами.

Это руководство — живое, по мере получения новых материалов, уточнений, комментариев от вас, дорогие читатели оно будет дополняться, изменяться, становиться лучше. Всегда самая свежая версия руководства лежит у меня на сайте в бложике Я обеими руками поддерживаю движение Open Source и Open Hardware, считаю, что обмен знаниями должен быть свободным, это принесет пользу для всех, поэтому пособие распространяется под лицензией Creative Commons 3.0 BY-NC-SA, что значит, вы можете делать с ним что угодно: выкладывать, распространять, модифицировать, соблюдая только три ограничения:

Проводники:
*Серебро
*Медь
*Алюминий
*Железо
*Золото
*Никель
*Вольфрам
*Ртуть
Так себе проводники:
*Углерод
*Нихромы
*Сплавы для изготовления термостабильных сопротивлений
*Припои
*Олово
*Легкоплавкие припои
Прочие проводники
*Термопарные сплавы
*Оксид Индия-Олова
Диэлектрики (Совсем не проводники):
*Неорганические диэлектрики
**Фарфор
**Стекло
**Слюда
**Алюмооксидные керамики
**Асбест
**Вода
*Органические диэлектрики полусинтетические
**Бумага, картон
**Шёлк
**Воск, парафин
**Трансформаторное масло
**Фанера, ДСП
*Органические диэлектрики синтетические
**Материалы на базе фенол-формальдегидных смол
**Карболит (бакелит)
**Гетинакс
**Текстолит
**Стеклотекстолит
**Лакоткань
**Резина
**Эбонит
**Полиэтилен
**Полипропилен
**Полистирол, АБС-пластик
**Фторопласт-4 (политетрафторэтилен PTFE)
**Поливинилхлорид — ПВХ
**Полиэтилентерефталат (ПЭТФ)
**Силиконы
**Полиимид
**Полиамиды
**Полиметилметакрилат — ПММА
**Поликарбонат
*График истории промышленного применения полимеров
*Изоленты
**Прорезиненная тканевая изолента
**Тканевые изоленты
**Резиновые самовулканизирующиеся изоленты
**Силиконовые самослипающиеся ленты
**Полиимидная лента
**ПВХ изоленты
**Канцелярская липкая лента «скотч»
*Изоляционные трубки
**Трубка из ПВХ — «кембрик»
**Фторопластовая трубка
**Стеклотканевая с силиконом
**Термоусадочная трубка
*Дополнительные сведения о полимерах

Проводники

Двадцатый век — век пластмасс. До появления широкого спектра синтетических полимерных материалов, человек использовал в конструировании металлы и материалы природного происхождения — дерево, кожу и т.д. Сегодня мы завалены пластмассовыми изделиями, начиная от одноразовой посуды, заканчивая тяжелонагруженными деталями двигателей автомобилей. Пластмассы во многом превосходят металлы, но никогда не вытеснят их полностью, поэтому рассказ начнется с металлов. Металлам посвящены сотни книг, дисциплина, посвященная им, называется «металловедение».

Нас интересуют металлы с точки зрения электронной техники. Как проводники, как часть электронных приборов. Все остальные применения — например такие, как конструкционные материалы, в данное пособие пока не вошли.

Главное для электронной техники свойство металлов — это способность хорошо проводить электрический ток. Посмотрим на таблицу удельного сопротивления различных металлов:

МеталлУдельное сопротивление Ом*мм2/м
Серебро0,015. 0,0162
Медь0,01724. 0,018
Золото0,023
Алюминий0,0262. 0,0295
Иридий0,0474
Вольфрам0,053. 0,055
Молибден0,054
Цинк0,059
Никель0,087
Железо0,098
Платина0,107
Олово0,12
Свинец0,217. 0,227
Титан0,5562. 0,7837
Висмут1,2

Видим лидеров нашего списка: Ag, Cu, Au, Al.

Серебро

Ag — Серебро. Драгоценный металл. Серебро — самый дешевый из драгоценных металлов, но, тем не менее, слишком дорог, чтобы делать из него провода. На 5% лучшая электропроводность по сравнению с медью, при разнице в цене почти в 100 раз.

Примеры применения

В виде покрытий проводников в СВЧ технике. Ток высокой частоты, из-за скинэффекта течет по поверхности проводника, а не в его толще, поэтому тонкое покрытие волновода серебром дает бОльший прирост проводимости, чем покрытие серебром проводника для постоянного тока.

В сплавах контактных групп. Контакты силовых, сигнальных реле, рубильников, выключателей чаще всего изготовлены из сплава с содержанием серебра. Переходное сопротивление такого контакта получается ниже медного, он меньше подвержен окислению. Так как контакт обычно миниатюрен, стоимость этой малой добавки серебра к стоимости изделия незначительно. Хотя при утилизации большого количества реле, стоимость серебра делает целесообразным работу бокорезами по отделению контактов в кучку для последующего аффинажа.

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический ток
Контакты силового реле на 16 Ампер. Согласно документации производителя
контакты содержат серебро и кадмий.

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический ток
Различные реле. Верхнее реле имеет даже посеребренный корпус с характерной патиной. Содержание драгметаллов в изделиях, выпущенных в СССР было указано в паспортах на изделия.

В качестве присадки в припоях. Качественные припои (как твёрдые так и мягкие) часто содержат серебро.

Проводящие покрытия на диэлектриках. Например, для получения контактной площадки на керамике, на неё наносится суспензия из серебряных частиц с последующим запеканием в печи (метод «вжигания»).

Компонент электропроводящих клеев и красок. Электропроводящие чернила часто
содержат суспензию серебряных частиц. По мере высыхания таких чернил, растворитель
испаряется, частицы в растворе оказываются всё ближе, слипаясь и создавая проводящие
мостики, по которым может протекать ток. Хорошее видео с рецептом по созданию таких
чернил.

Недостатки

Несмотря на то, что серебро — благородный металл, он окисляется в среде с содержанием
серы:
4Ag + 2H2S + O2 → 2Ag2S + 2H2O

Образуется темный налет — «патина». Также источником серы может служить резина, по-
этому провод в резиновой изоляции и посеребренные контакты — плохое сочетание.
Потемневшее серебро можно очистить химически. В отличии от чистки абразивными пастами (в том числе зубной пастой) это самый нежный способ чистки, не оставляющий царапин.

Cu — медь. Основной металл проводников тока. Обмотки электродвигателей, провода в изоляции, шины, гибкие проводники — чаще всего это именно медь. Медь нетрудно узнать по характерному красноватому цвету. Медь достаточно устойчива к коррозии.

Примеры применения

Провода. Основное применение меди в чистом виде. Любые добавки снижают электропроводность, поэтому сердцевина проводов обычно — чистейшая медь.

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический ток
Гибкие многожильные провода различного сечения.

Гибкие тоководы. Если проводники для стационарных устройств можно в принципе изготовить из любого металла, то гибкие проводники делают почти всегда только из меди, алюминий для этих целей слишком ломкий. Содержат множество тоненьких медных жилок.

Теплоотводы. Медь не только на 56% лучше алюминия проводит ток, но ещё имеет почти вдвое лучшую теплопроводность. Из меди изготавливают тепловые трубки, радиаторы, теплораспределяющие пластины. Так как медь дороже алюминия, часто радиаторы делают составными, сердцевина из меди, а остальная часть из более дешевого алюминия.

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический ток
Радиаторы охлаждения процессора. Центральный стержень изготовлен из меди, он хорошо отводит тепло от кристалла процессора, а алюминиевый радиатор с развитым оребрением уже охлаждает сам стержень.

При изготовлении фольгированных печатных плат. Печатные платы, в любом электронном устройстве изготовлены из пластины диэлектрика, на который наклеена медная фольга. Все соединения между элементами печатной платы выполнены дорожками из медной фольги.

Техника сверхвысокого вакуума. Из металлов и сплавов только нержавеющая сталь и медь пригодны для камер сверхвысокого вакуума в таких приборах, как ускорители элементарных частиц или рентгеновские спектрометры. Все остальные металлы в вакууме слегка испаряются и портят вакуум.

Аноды рентгеновских трубок. В рентгеноструктурном анализе требуется монохроматическое рентгеновское излучение. Его источником зачастую является облучаемая электронами медь (спектральная линия Cu Kα), которая к тому же прекрасно отводит тепло. Если же требуется другое излучение (Co или Fe), его получают от маленького кусочка соответствующего металла на массивном медном теплоотводе. Такие аноды всегда охлаждаются проточной водой.

Интересные факты о меди

Алюминий

Al — Алюминий. «Крылатый металл» четвертый по проводимости после серебра, золота и меди.
Алюминий хоть и проводит ток почти в полтора раза хуже меди, но он легче в 3,4 раза и в три
раза дешевле. А если посчитать проводимость, то эквивалентный медному проводник из
алюминия будет дешевле в 6,5 раз! Алюминий бы вытеснил медь, как проводник везде, если
бы не пара его противных свойств, но об этом в недостатках.

Чистый алюминий, как и чистое железо, в технике практически не применяется (исключения
— провода и фольга). Любой «алюминиевый» предмет состоит из какого-нибудь сплава алюминия. Сплавы могут содержать кремний, магний, медь, цинк и другие металлы. Их свойства отличаются очень сильно, и это необходимо учитывать при обработке. Ниже перечислены несколько самых распространенных марок алюминия:

Примеры применения

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический ток
Слева старый алюминиевый провод. Справа алюминиевые кабели различного сечения,
пригодные для укладки в грунт. В частности кабелем справа был подключен к электроэнергии целый этаж здания. Кабель помимо наружной резиновой оболочки имеет бронирующую стальную ленту, для защиты нижележащей изоляции от повреждений, к примеру лопатой при раскопке.

Теплоотводы. Не только домашние батареи делают из алюминия, но и радиаторы у
микросхем, процессоров, делают из алюминия.

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический ток
Различные алюминиевые радиаторы.

Корпуса приборов. Корпус жёсткого диска в вашем компьютере отлит из алюминиевого сплава. Небольшая добавка кремния улучшает прочностные качества алюминия, сплав силумин — это корпуса жёстких дисков, бытовых приборов, редукторов и т. д.

Анодированный алюминий (алюминий, у которого электрохимическим путем окисная пленка
на поверхности сделана потолще и прочнее) хорошо окрашивается и просто красив. Окисная
пленка (Al2O3 — из того же вещества состоят драгоценные камни рубины и сапфиры) достаточно твёрдая и износостойкая, но к сожалению алюминий под ней мягок, и при сильном воздействии ломается как лёд на воде.

Экраны. Электромагнитное экранирование часто делается из алюминиевой фольги или тонкой алюминиевой жести. Можете провести простой эксперимент, мобильный телефон
завернутый в фольгу потеряет сеть — он будет заэкранирован.

Отражающее покрытие у зеркал. Тонкая пленка алюминия на стекле отражает 89% падающего света (примерное значение, зависит от условий) (Серебро 98%, но на воздухе темнеет из-за сернистых соединений). Любой лазерный принтер содержит вращающееся зеркало, покрытое тонким слоем алюминия.

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический ток
Зеркала от оптической системы планшетного сканера. Обратите внимание, оптические зеркала имеют металлизацию стекла снаружи, в отличии от привычных бытовых зеркал, где отражающее покрытие для защиты за стеклом. Бытовые зеркала дают двойное отражение — от поверхности стекла и от отражающего покрытия, что не так критично в быту, как защищенность отражающего покрытия.

Электроды обкладок конденсаторов. Алюминиевая фольга, разделенная слоем диэлектрика и туго свернутая в цилиндр — часть электрических конденсаторов (впрочем, для уменьшения габаритов конденсаторов фольгу заменяют алюминиевым напылением). Тот факт, что пленка оксида алюминия тонкая, прочная и не проводит ток, используется в электролитических конденсаторах, обладающими огромными для своих габаритов электрическими емкостями.

Недостатки

Алюминий — металл активный, но на воздухе покрывается оксидной пленкой, которая предохраняет металл от разрушения и скрывает его активную натуру. Если не дать алюминию формировать стабильную защитную пленку, например капелькой ртути, алюминий активно реагирует с водой. В щелочной среде алюминий растворяется, попробуйте залить алюминиевую фольгу средством для прочистки труб — реакция будет бурная, с выделением взрывоопасного водорода. Химическая активность алюминия, в паре с большой разницей в электрооотрицательности с медью делает невозможным прямое соединение проводов из этих двух металлов. В присутствии влаги (а она в воздухе есть почти всегда) начинает протекать гальваническая коррозия с разрушением алюминия.

что плохо проводит электрический ток. Смотреть фото что плохо проводит электрический ток. Смотреть картинку что плохо проводит электрический ток. Картинка про что плохо проводит электрический ток. Фото что плохо проводит электрический ток
Два идентичных трансформатора от микроволновых печей. Левый вышел из строя по причине алюминиевых обмоток — отгорел провод от контакта — алюминий плохо паяется мягкими припоями, попытка обеспечить контакт также как и у медного провода привела к поломке.

Алюминий ползуч. Если алюминиевый провод очень сильно сжать, он деформируется
и сохранит новую форму — это называется «пластическая деформация». Если сжать его не
так сильно, чтобы он не деформировался, но оставить под нагрузкой надолго — алюминий
начнет «ползти» меняя форму постепенно. Это пакостное свойство ведет к тому, что хорошо
затянутая клемма с алюминиевым проводом спустя 5-10-20 лет постепенно ослабнет и будет
болтаться, не обеспечивая былого электрического контакта. Это одна из причин, почему ПУЭ
запрещает тонкий алюминиевый провод для разводки электроэнергии по потребителям в
зданиях. В промышленности не сложно обеспечить регламент — так называемая «протяжка»
щитка, когда электрик периодически проверяет затяжку всех клемм в щитке. В домашних же условиях, обычно пока розетка с дымом не сгорит — никто и не озаботится качеством контакта. А плохой контакт — причина пожаров.

Алюминий, по сравнению с медью, менее пластичный, риска от ножа на жиле, при сьёме изоляции с провода быстрее приведет к сломавшейся жиле, чем у меди, поэтому изоляцию с алюминиевых проводов надо счищать как с карандаша, под углом, а не в торец.

Интересные факты об алюминии

Источники

В крупных строительных магазинах (OBI, Leroy Merlin, Castorama) обычно есть в наличии алюминиевый профиль разных размеров и форм. Неплохим источником может послужить штампованная алюминиевая посуда — она очень дешева и существует разных форм. Но обратите внимание на марки. Если нужен 6061 и тем более 7075, придется покупать его у фирмы, специализирующейся по металлам.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *