Машина тьюринга все команды
Машина Тьюринга
В 1936 г. Аланом Тьюрингом для уточнения понятия алгоритма был предложен абстрактный универсальный исполнитель. Его абстрактность заключается в том, что он представляет собой логическую вычислительную конструкцию, а не реальную вычислительную машину. Термин «универсальный исполнитель» говорит о том, что данный исполнитель может имитировать любой другой исполнитель. Например, операции, которые выполняют реальные вычислительные машины можно имитировать на универсальном исполнителе. В последствие, придуманная Тьюрингом вычислительная конструкция была названа машиной Тьюринга.
Кроме того, предполагается, что универсальный исполнитель должен уметь доказывать существование или отсутствие алгоритма для той или иной задачи.
Что собой представляет машина Тьюринга?
Машина Тьюринга состоит из бесконечной в обе стороны ленты, разделенной на ячейки, и автомата (головки), которая управляется программой.
Программы для машин Тьюринга записываются в виде таблицы, где первые столбец и строка содержат буквы внешнего алфавита и возможные внутренние состояния автомата (внутренний алфавит). Содержимое таблицы представляет собой команды для машины Тьюринга. Буква, которую считывает головка в ячейке (над которой она находится в данный момент), и внутренне состояние головки определяют, какую команду нужно выполнить. Команда определяется пересечением символов внешнего и внутреннего алфавитов в таблице.
Чтобы задать конкретную машину Тьюринга, требуется описать для нее следующие составляющие:
Автомат машины Тьюринга в процессе своей работы может выполнять следующие действия:
Одна команда для машины Тьюринга как раз и представляет собой конкретную комбинацию этих трех составляющих: указаний, какой символ записать в ячейку (над которой стоит автомат), куда передвинуться и в какое состояние перейти. Хотя команда может содержать и не все составляющие (например, не менять символ, не передвигаться или не менять внутреннего состояния).
Пример работы машины Тьюринга
Можно усложнить программу. Допустим, головка располагается не обязательно над первым, а над любым символом слова. Тогда программа для данной машины Тьюринга может быть такой (а могла бы быть и другой):
Здесь происходит сдвиг головки влево до тех пор, пока она не окажется над пустым символом. После этого машина переходит в состояние q2 (команды которого совпадают с командами q1 предыдущей программы).
Машина Тьюринга
Содержание
Машина Тьюринга (англ. Turing machine) — модель абстрактного вычислителя, предложенная британским математиком Аланом Тьюрингом в 1936 году. Эта модель позволила Тьюрингу доказать два утверждения. Первое — проблема останова неразрешима, т.е. не существует такой машины Тьюринга, которая способна определить, что другая произвольная машина Тьюринга на её ленте зациклится или прекратит работу. Второе — не существует такой машины Тьюринга, которая способна определить, что другая произвольная машина Тьюринга на её ленте когда-нибудь напечатает заданный символ. В этом же году был высказан тезис Чёрча-Тьюринга, который терминах теории рекурсии формулируется как точное описание интуитивного понятия вычислимости классом общерекурсивных функций. В этой формулировке часто упоминается как просто тезис Чёрча. В терминах вычислимости по Тьюрингу тезис гласит, что для любой алгоритмически вычислимой функции существует вычисляющая её значения машина Тьюринга. В виду того, что классы частично вычислимых по Тьюрингу и частично рекурсивных функций совпадают, утверждение объединяют в единый тезис Чёрча — Тьюринга.
Неформально машина Тьюринга определяется как устройство, состоящее из двух частей:
При запуске машины Тьюринга на ленте написано входное слово, причём на первом символе этого слова находится головка, а слева и справа от него записаны пустые символы. Каждый шаг головка может перезаписать символ под лентой и сместиться на одну ячейку, если автомат приходит в допускающее или отвергающее состояние, то работа машины Тьюринга завершается.
Определение [ править ]
Определение машины [ править ]
Отметим, что существуют различные вариации данного выше определения (например, без отвергающего состояния или с множеством допускающих состояний), которые не влияют на вычислительные способности машины Тьюринга.
Определение процесса работы [ править ]
Особо следует рассмотреть случай переходов по пробельному символу:
Для машины Тьюринга, которая пишет символ [math]B[/math] на ленту также можно дать аналогичное формальное определение. Оно будет отличаться тем, что символы в строчках конфигурации могут содержать пробелы, и для того, чтобы эти строчки имекли конечную длину, нужно аккуратно учесть наличие пробелов при записи правил перехода.
Результат работы [ править ]
Примеры машин-распознавателей и машин-преобразователей будут даны ниже.
Примеры машин Тьюринга [ править ]
Прибавление единицы [ править ]
Для начала приведём пример машины-преобразователя, которая прибавляет единицу к числу, записанному на ленте в двоичной записи от младшего бита к старшему. Алгоритм следующий:
[math]0[/math] | [math]1[/math] | [math]B[/math] | |
[math]S[/math] | [math]\langle R, 1, \downarrow \rangle[/math] | [math]\langle S, 0, \rightarrow \rangle[/math] | [math]\langle R, B, \leftarrow \rangle[/math] |
[math]R[/math] | [math]\langle R, 0, \leftarrow \rangle[/math] | [math]\langle R, 1, \leftarrow \rangle[/math] | [math]\langle Y, B, \rightarrow \rangle[/math] |
Проверка того, является ли слово палиндромом [ править ]
[math]0[/math] | [math]1[/math] | [math]B[/math] | |
[math]S[/math] | [math]\langle F_0, B, \rightarrow \rangle[/math] | [math]\langle F_1, B, \rightarrow \rangle[/math] | [math]\langle Y, B, \downarrow \rangle[/math] |
[math]F_0[/math] | [math]\langle F_0, 0, \rightarrow \rangle[/math] | [math]\langle F_0, 1, \rightarrow \rangle[/math] | [math]\langle B_0, B, \leftarrow \rangle[/math] |
[math]F_1[/math] | [math]\langle F_1, 0, \rightarrow \rangle[/math] | [math]\langle F_1, 1, \rightarrow \rangle[/math] | [math]\langle B_1, B, \leftarrow \rangle[/math] |
[math]B_0[/math] | [math]\langle R, B, \leftarrow \rangle[/math] | [math]\langle N, 1, \downarrow \rangle[/math] | [math]\langle Y, B, \downarrow \rangle[/math] |
[math]B_1[/math] | [math]\langle N, 0, \downarrow \rangle[/math] | [math]\langle R, B, \leftarrow \rangle[/math] | [math]\langle Y, B, \downarrow \rangle[/math] |
[math]R[/math] | [math]\langle R, 0, \leftarrow \rangle[/math] | [math]\langle R, 1, \leftarrow \rangle[/math] | [math]\langle S, B, \rightarrow \rangle[/math] |
Варианты машины Тьюринга [ править ]
В этом разделе приведены различные варианты машин Тьюринга, которые не отличаются от обычных машин Тьюринга по вычислительной мощности.
Многодорожечная машина Тьюринга [ править ]
Машина Тьюринга с полубесконечной лентой [ править ]
Заменив у машины Тьюринга бесконечную в обе стороны ленту на бесконечную в одну сторону, мы не теряем в вычислительной мощности. По произвольной машине Тьюринга строится двухдорожечная машина с полубесконечной лентой.
Существует алгоритм, по которому для любой машины Тьюринга может быть построена эквивалентная машина Тьюринга с объявленным свойством. Сначала занумеруем ячейки рабочей ленты машины Тьюринга с бесконечной лентой следующим образом:
Затем перенумеруем ячейки, и запишем символ [math]c \in \Pi \setminus \Sigma, B[/math] в начало ленты, который будет означать границу рабочей зоны:
Начальное состояние новой машины Тьюринга устанавливается в одной или другой зоне в зависимости от того, в какой части исходной ленты располагалась головка считывания-записи в исходной конфигурации.
Многоленточная машина Тьюринга [ править ]
Многоленточная машина с [math]n[/math] дорожками эмулируется многодорожечной машиной с [math]2n[/math] дорожками следующим образом: каждая нечётная дорожка соответствует ленте исходной машины, а на каждой чётной дорожке отмечены специальным символом [math]*[/math] позиция головки на ленте выше (считаем, что ленты нумеруются сверху вниз).
Каждый шаг исходной машины эмулируется конечной последовательностью шагов построенной машины следующим образом: исходно головка находится в позиции самой левой отметки и идёт вправо до самой правой отметки, запоминая прочитанные около символов [math]*[/math] символы в состоянии. Пройдя до самой правой отметки, головка возвращается влево, совершая необходимые действия (переписывая символы около отметок и передвигая сами отметки). После такого прохода головка переходит в следующее состояние, завершая эмуляцию шага.
Аланом Тьюрингом было сформулировано следующее утверждение:
Утверждение (Тезис Чёрча-Тьюринга): | |||||||||||||||||||||||||||||||||||||||||||||||
\(_ | Λ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | ΛП1 | 0Н2 | 1Н2 | 2Н2 | 3Н2 | 4Н2 | 5Н2 | 6Н2 | 7Н2 | 8Н2 | 9Н2 |
2 | ΛЛ3 | 0П2 | 1П2 | 2П2 | 3П2 | 4П2 | 5П2 | 6П2 | 7П2 | 8П2 | 9П2 |
3 | 1Н0 | 1Н0 | 2Н0 | 3Н0 | 4Н0 | 5Н0 | 6Н0 | 7Н0 | 8Н0 | 9Н0 | 0Л3 |
Проследим работу этого алгоритма на примере. Первая строчка соответствует ленте, во второй обозначается положение автомата и его текущее состояние.
В состоянии 1, автомат находится над пустой ячейкой. Соответствующая команда из таблицы “ΛП1”, то есть, оставить ячейку пустой, переместиться вправо и остаться в состоянии 1:
Теперь автомат наблюдает значение “1”. Соотвествующая команда “1Н2”, то есть оставить в ячейке “1”, не перемещаться, и перейти в состояние “2”:
В состоянии “2”, автомат наблюдает значение “1”. Соответствующая команда “1П2”, то есть оставить “1”, переместиться вправо и остаться в состоянии “2”:
Аналогично, команда для состояния “2” и символа “9” – “9П2”:
Наконец, в состоянии 2 автомат наблюдает пустой символ. Команда “ΛЛ3”:
Теперь, в состоянии 3 и наблюдая символ “9”, автомат выполняет команду “0Л3”:
Наконец, выполняется команда “2Н0”:
Состояние “0” – состояние остановки. Работа алгоритма завершена.
Формальное описание
Математически, машину Тьюринга можно описать следующим образом:
Ключевым в теории алгоритмов является тезис Тьюринга.
В вольной формулировке, тезис Тьюринга формулируется следующим образом:
Тезис Тьюринга для любой алгоритмически разрешимой задачи, существует решающая эту задачу машина Тьюринга. иначе, для любого алгоритма существует эквивалентная ему машина Тьюринга.
Тезис Тьюринга позволяет говорить об алгоритмах, пользуясь достаточно простым математическим аппаратом. Более того, сама по себе машина Тьюринга является универсальным исполнительным устройством, и сама возможность создания такой воображаемой машины стала поводом говорить о создании универсальной вычислительной техники.
Альтернативные определения алгоритма
Кроме машины Тьюринга, существует несколько независимых определений, эквивалентных определению Тьюринга.
В частности, определение через машину Поста, через лямбда-исчисление Чёрча, нормальный алгоритм Маркова.
Рассмотрим эти способы.
Машина Поста
Через год после Тьюринга, американский математик Эмиль Леон Пост независимо предложил другую абстрактную универсальную вычислительную машину, которая является некоторым упрощением по сравнению с машиной Тьюринга.
Машина Поста оперирует двузначным алфавитом, и внутреннее состояние автомата заменяется на строку программы.
В остальном, машина Поста аналогична машине Тьюринга: есть автомат, и есть бесконечная лента с ячейками.
Машина Поста может выполнять следующие команды:
Так же машина Поста имеет несколько запрещенных команд:
Подобные события приводят к аварийному завершению работы.
Для написания программ для машины поста можно использовать следующие обозначения:
Эта программа сотрет первую метку (1), находящуюся справа от начального положения автомата, и остановит автомат в ячейке слева от нее.
По большому счету, машина Поста является предшественником императивных языков программирования, например, C, Fortran и пр.
Машина Поста является эквивалентной машине Тьюринга. Другими словами, для любой программы для машины Тьюринга, можно записать эквивалентную программу для машины Поста, и наоборот.
Одним из важных следствий этой эквивалентности является то, что любой алфавит можно свести к двоичному коду.
Аналогично тезису Тьюринга, существует так же и тезис Поста.
Тезис Поста всякий алгоритм представим в виде машины Поста.
Нормальный алгоритм Маркова
Нормальные алгоритмы Маркова предназначены для применения к словам в различных алфавитах.
Определение всякого нормального алгоритма состоит из двух частей:
Сам алгоритм применяется к словам, то есть последовательностям символов алфавита.
При этом предполагается, что вспомогательные символы \(\to\) и \(\to\cdot\) не принадлежат алфавиту алгоритма.
Процесс применения нормального алгоритма к произвольному слову \(V\) представляет собой следующую последовательность действий:
Любой нормальный алгоритм эквивалентен некоторой машине Тьюринга, и наоборот – любая машина Тьюринга эквивалентна некоторому нормальному алгоритму.
Аналог тезиса Тьюринга для нормальных алгоритмов принято называть принципом нормализации.
Пример
Данный алгоритм преобразует двоичные числа в “единичные” (в которых записью целого неотрицательного числа N является строка из N палочек). Например, двоичное число 101 преобразуется в 5 палочек: |||||.
Рекурсивные функции
Систему, эквивалентную машине Тьюринга, можно построить на основе математических функций. Для этого, нам требуется ввести следующие классы функций:
Последний класс будет совпадать с классом вычислимых по Тьюрингу функций (то есть функций, для вычисления которых можно построить алгоритм для машины Тьюринга).
Определение алгоритма через рекурсивные функции по сути лежит в основе лямбда-исчисления, и на его основе строится подход функционального программирования.
Примитивно рекурсивные функции
Класс примитивно рекурсивных функций содержит базовые функции и все функции, получающиеся из базовых посредством операторов подстановки и примитивной рекурсии.
К базовым функциям относятся:
Для конструирования остальных функций класса используются операторы:
Частично рекурсивные функции
Класс частично рекурсивных функций включает примитивно рекурсивные функции, и, плюс к этому, все функции, которые получаются из примитивно рекурсивных с помощью оператора минимизации аргумента:
Оператор минимизации аргумента
\[ h(x_1,\ldots,x_
В то время как примитивно рекурсивные функции всегда вычислимы, частично рекурсивные функции при некоторых значениях аргументов могут быть не определены.
Более строго частично рекурсивные функции следовало бы называть “частично определенные рекурсивные функции”, поскольку они определены только на части возможных значений аргументов.
Общерекурсивные функции
Общерекурсивные функции – это подкласс всех частично рекурсивных функций, которые определены для любых значений аргументов. Задача определения того, является ли данная частично рекурсивная функция общерекурсивной является алгоритмически неразрешимой. Это подводит нас к теме теории вычислимости и проблеме останова.
Теория вычислимости и проблема останова
Наше воображение в целом допускает существование неразрешимых задач, то есть задач, для решения которых невозможно составить алгоритм.
Исследованием таких задач занимается теория вычислимости.
Примерами алгоритмически неразрешимых задач являются проблема останова и проблема распознавания выводимости. Рассмотрим их более подробно.
Проблема останова является алгоритмически неразрешимой. Докажем это.
Пусть существует универсальный алгоритм, решающий проблему останова. Рассмотрим тогда класс алгоритмов, обрабатывающий тексты описания алгоритмов.
Более общей формулировкой проблемы останова является проблема определения выводимости.
Проблема распознавания выводимости
Пусть определены некий алфавит, слова (формулы) этого алфавита, и система формальных преобразований над словами этого алфавита (т.е. построено логическое исчисление)
Существует ли для любых двух слов \(R\) и \(S\) дедуктивная цепочка, ведущая от \(R\) к \(S\) в рамках данного логического исчисления?
В 1936 году Алонзо Чёрч доказал теорему Чёрча.
Теорема Чёрча Проблема распознавания выводимости алгоритмически неразрешима.
Чёрч использовал для доказательства формализм лямбда-исчисления. В 1937 независимо от него ту же теорему доказал Тьюринг, используя формализм машины Тьюринга.
Поскольку все определения алгоритмов эквиваленты друг другу, существует система понятий, не связанная с конкретным определением алгоритма, и оперирует понятием вычислимой функции.
Вычислимая функция функция, для вычисления которой можно составить алгоритм.
Существуют задачи, в которых связь между входными и выходными данными невозможно описать с помощью алгоритма. Такие функции являются невычислимыми.
Пример невычислимой функции
- Машина тьюринга возведение в степень
- Машина тьюринга вычитание единицы