можно ли вставить серверную оперативную память в обычный пк
Микроскопом по гвоздям: стоит ли ставить серверное железо в домашний ПК?
Привет, Гиктаймс! Народное поверье гласит, что трава у соседа всегда зеленее, а компьютеры, которые для своих нужд закупают дотошные предприниматели, надёжнее и производительнее, чем сдобренные маркетингом модели в рознице. Целая каста энтузиастов охотится на серверные комплектующие и боготворит производительность железа корпоративного класса. Разбираемся, действительно ли крупные организации плещутся в «IT-раю», или же гики сотворили себе идола из ничего?
Нет преград энтузиастам, особенно если эти преграды воздвигнуты коварными маркетологами, которые поделили все электронные устройства на корпоративные и консьюмерские! Потому что даже в СМИ с рекламой о загадочном «пользовательском опыте» разработчики софта и железа проговариваются, мол, «камера этого смартфона обеспечивает профессиональное качество снимков!», да и другим образом штамп о профессионалах, которые ерундой не пользуются, эксплуатируют уже давно. И если уж искать пресловутую «профессиональную технику» и качество услуг, то лучше вопрошать железо и методы обслуживания корпоративного класса, верно?
Мотивы, которыми руководствуются неугомонные энтузиасты, лежат на поверхности — пусть консьюмерская техника и развивается бодрее за счёт аппетитов покупателей, «закаленные боями» комплектующие корпоративного класса явно будут надёжнее, а на вторичном рынке — ещё и дешевле. Играют же как-то гики на видеокартах для рабочих станций, собирают же могучие и «вечные» домашние ПК с серверной начинкой! Стало быть, есть смысл попытать счастья?
И толика этого самого смысла в подобное затее, разумеется, есть, но с приобретением корпоративных «атрибутов» под домашние условия можно «влипнуть» и, в лучшем случае, переплатить за невостребованную функциональность, а в худшем — уйти в минус в сравнении с вариантами, доступными для розничного покупателя. Разбираемся, в чём состоит подвох в использовании железа, разработанного для корпораций.
Серверный — тоже игровой. Intel Xeon в домашних ПК
Первое, что приверженцы технологий любят использовать из корпоративного сегмента — серверные процессоры. Не экзотические, а наиболее «понятные», то есть, на базе архитектуры x86. Удовольствие это не из дешёвых, поэтому «зеоноводы», условно говоря, включают в себя два лагеря с немного разными ориентирами в постройке ПК:
Xeon — изначально не для игр и «гонок» в бенчмарках, но иногда бывают полезны
• Энтузиасты, нацеленные на High-End комплектующие. Это такой уровень, когда крупносерийных версий Intel Core i7 уже недостаёт, а при взгляде на платформу LGA-2011 (любого из поколений) на ум приходят мысли о том, что «суперзаряженные» Core i7 предлагают «те же яйца», только в меньшем количестве и без разгона.
Потому что, коль уж мы говорим о цене, случались в истории моменты, когда восьмиядерные Xeon оказывались эдак на треть дешевле и значительно «холоднее», чем 6-ядерные Core i7 Extreme Edition. Например, так было после дебюта чипов Intel Haswell-E в 2014 году — во-первых, что разница в цене между шестиядерным Core i7-5960X и «гражданским» четырёхъядерником i7-4790K составляла жалкие 15%. А во-вторых, младший серверный восьмиядерный Xeon E5-2609 v4 стоил примерно на 30% дешевле, чем кандидат из лагеря Haswell-E. При этом, в отличие от «просто» Core i7 в Xeon ниже уровень TDP и отсутствует бесполезная для энтузиастов интегрированная в процессор графика.
При этом кэша L3 во всех трёх моделях навалено тоннами, а частота, хоть ниже в Xeon, но убеждения «в работе ядра лишними не бывают» и «очень скоро игры оптимизируют таким образом, чтобы они работали быстро на 8 и более ядрах» не дают экономным любителям скорости покоя, после чего горячие парни отправляют младшие версии Xeon в чипсет Intel X99 и… никому не признаются, как обстоят дела в играх.
Потому четыре ядра, разбавленных с помощью Hyper-Threading, почти всегда оказываются эффективнее в играх, чем восемь низкочастотных «горшков» в Xeon, которые даже разогнать никак нельзя (заблокированный множитель, околонулевой разгон по шине).
• «Кулибины», которые захотели модернизировать старую платформу при минимальных затратах. Например, приобрести взамен старого процессора Core 2 Duo не старый Quad, а гораздо более крутой и высокочастотный четырёхъядерный Xeon X5460, который с помощью нехитрого переходника можно установить не в серверную материнскую плату с Socket 771, а в «гражданскую» для Socket 775.
Главное в таком сценарии — озаботиться качественным охлаждением (серверные «камни» щеголяют TDP порядка 120 Вт взамен 95 Вт у стандартных четырёхъядерников), но в итоге такой вариант апгрейда с очень старой платформы до «терпимо старой» себя оправдывает, тем более, что на некоторых матплатах процессор можно разогнать аж до 4 ГГц.
И ведь у «Зионов» есть преимущества, которыми они компенсируют свою многоядерную нерасторопность в играх! Например, возможность городить мультипроцессорные конфигурации, с которыми кодирование видео/музыки/фото и CAD-моделирование происходит намного быстрее, чем в топовых Core i7 Extreme. Поддержка регистровой памяти с ECC, к примеру, позволяет исправлять ошибки «на лету», а это пригождается при большом аптайме (сервер же!). Поддержка «конских» объёмов ОЗУ и огромное количество ядер тоже придутся ко двору, когда серверу нужно обработать входящие соединения максимально быстро. Но всё это почти бесполезно в домашнем ПК.
А полезно для него — много ядер на высокой частоте. Если эти условия соблюдены, сам процессор совместим с платформами LGA 2011 или LGA 2011-3 и обходится дешевле, чем «просто» Core i7 — смысл в его приобретении есть. В противном случае лучше либо обойтись массовыми четырёхъядерниками о восьми потоках, либо конструировать рабочую станцию под конкретные сценарии использования (рендеринг, кодирование).
Высокочастотные Intel Xeon (если они дешевле мейнстрим CPU) могут стать хорошим подспорьем не только в работе, но и в играх (источник: ferra.ru)
Косите фраги на рабочей станции с хакнутыми драйверами NVIDIA
Если с использованием серверного процессора можно играть скорее вопреки, чем благодаря установленному железу, то графика, которую должно использовать для видеомоделирования или проектирования, исторически была крутой в игровых дисциплинах. В противостоянии AMD и NVIDIA даже сценарии «нецелевого использования» видеоускорителей всегда были разными: «красные» геймерские видеокарты ещё недавно были нарасхват у майнеров, а NVIDIA Quadro, так уж исторически, уговаривали переквалифицироваться в игровую видеокарту.
Профессиональные видеокарты NVIDIA Quadro значительно производительнее своих игровых сородичей
Причём Quadro для этих целей вполне подходит — дело в том, что игровые GeForce чаще всего представляют собой профессиональную видеокарту с частично отключенными конвейерами графического процессора (от маркетинговых соображений до отбраковки чипа) по более доступной цене. Например, новая профессиональная видеокарта Quadro P6000 содержит наиболее «полную» версию графического чипа GP102 и по этой причине обходит в производительности крутую геймерскую GeForce 1080 почти на 20%, да и могучий Titan X на базе всё той же архитектуры Pascal неизменно оставляет позади.
А вообще, среди поклонников видеокарт NVIDIA уже давно образовался фирменный спорт — приблизить с помощью аппаратной модификации GeForce к Quadro (например, GTX 680 в аналог Quadro K5000 по производительности), а любители игр, напротив, скрещивают ежа с ужом, «ковыряют» драйверы и заставляют профессиональные видеокарты работать быстрее в пострелушках/покатушках/бродилках. «Играть как задумано» такая деятельность не позволяет, но настырности энтузиастов можно только позавидовать.
В мобильных рабочих станцией почти у каждой видеокарты NVIDIA Quadro наблюдается забавная закономерность: всякий мобильный видеоускоритель NVIDIA Quadro равен игровой [1] GeForce классом ниже в геймерских задачах и на пару уровней более крутой игровой [1 + 2] GeForce в дисциплинах CAD.
Производительность мобильных NVIDIA Quadro в сравнении с аналогами GeForce (источник: msi.com)
Например, Quadro M2000M в играх показывает себя на уровне GeForce GTX 960M, но как только дело доходит до моделирования, «подпрыгивает» в результатах до GeForce GTX 980M. Примерно такое же соотношение справедливо и в случае с другими моделями Квадро: M5000M соревнуется с GTX 980M в играх, а M1000M соперничает с 950M в играх.
NVIDIA Quadro M6000 в сравнении с самыми быстрыми игровыми видеокартами
(источник: techgage.com
Детям мороженное, даме — цветы: приоритеты в корпоративной памяти и накопителях
Серверная оперативная память не совместима с материнскими платами в домашних ПК не потому, что кто-то так решил «назло» конечным покупателям. Просто серверная ОЗУ устроена чуть иначе — она содержит регистр между микросхемами и системным контроллером памяти для того, чтобы снизить электрическую нагрузку на контроллер и иметь возможность установить больше модулей в одном канале памяти.
Иными словами, дополнительные микросхемы и умение автоматически распознавать и исправлять ошибки очень повышает отказоустойчивость такого типа памяти, но и увеличивает её стоимость. Словом, не удивляйтесь, если обнаружите, что даже низкочастотные (по меркам стандарта DDR4) модули окажутся на 50% и более дороже, чем их «бытовые» аналоги — бесчеловечные требования в выносливости в круглосуточно включенных системах заметно видоизменили серверную ОЗУ. В повседневном использовании она не будет ни быстрее, ни эффективнее «гражданских» аналогов, поэтому за высокой производительностью стоит обращаться к геймерским комплектам — например, HyperX Savage, если вам нужна удобная в разгоне память для геймеров, и HyperX Predator, если хочется выжать из подсистемы ОЗУ максимум. Для штатных частот замечательно подходит бюджетный Kingston ValueRAM — надёжный, один раз установил и забыл.
Серверный процессор в домашнем ПК может пригодиться, а вот вместо регистровой памяти лучше приобрести стандартный комплект DDR3/DDR4
SSD корпоративного класса тоже претерпели «тюнинг» в сторону надёжности — в них, к примеру, есть возможность гибко управлять резервным объёмом под нужды контроллера. Чем больше объём — тем ниже износ ячеек и выше долговечность накопителя. И огромное количество алгоритмов, эффективных в тяжёлых условиях работы, особенно по части сохранности данных на случай, если накопитель выключится в аварийном режиме. Перенастроенная на минимальную задержку в режиме многопользовательского доступа прошивка и борьба за стабильную производительность даже при внештатно большом объёме операций записи и чтения. Такую нагрузку домашний компьютер не переживает, даже если «пытать» SSD торрентами. С другой стороны, рекордсменами в типовых операциях промышленные SSD тоже не являются — типовые SATA-накопители быстрее устареют «морально», с точки зрения объёма памяти, чем полностью исчерпают количество доступных для ячеек циклов перезаписи — проверенно длительным сравнительным тестом с участием моделей HyperX. А рекорды скорости при таком же уровне надёжности уже давно перешли к накопителям на базе интерфейса NVMe, которые реализованы в одном из новомодных форм-факторов «поверх» PCI-Express. В модельной линейке Kingston/HyperX «царём горы» был и остаётся Predator SSD PCI-E.
Выигрыш в долговечности при покупке SSD корпоративного класса не сравнится с радостью от быстродействия геймерского PCI-e накопителя
Если нельзя, но очень хочется — то можно
Железо корпоративного класса не настолько отличается от «гражданских» аналогов, чтобы признать его непригодным к работе в качестве домашнего ПК, просто всегда нужно исходить из того, стоит ли овчинка выделки. Потому что ситуация обстоит следующим образом:
• Покупать платформу, в которой используется регистровая память с коррекцией ошибок (ECC) для дома — плохая идея. Избыток долговечности не компенсирует дорогостоящие комплектующие и средний (в сравнении с геймерскими аналогами) уровень производительности не будут радовать, тем более, что и цены на серверную память заметно выше, чем на среднестатистический модуль DDR3/DDR4.
• Накопители корпоративного класса в домашнем компьютере нужны, если вы параноик, экстремально тревожитесь о сохранности данных в случае перебоев с электроэнергией и переживаете касательно надёжности современных SSD вообще. Накопители, ориентированные на организации, позволят вам «выкрутить на максимум» показатели надёжности, чтобы душа была спокойной.
• Серверный процессор для игр… любопытная и достаточно эффективная идея, но только лишь в том случае, когда речь идёт о более дешёвой (в сравнении с мейнстрим-аналогами) и, что главное, высокочастотной модели. Либо об апгрейде старого компьютера на серверный CPU «малой кровью», то есть, почти за бесценок. И да, в идеале платформа должна быть позаимствована у «обычной» Extreme-серии массовых процессоров.
• Профессиональные видеокарты отлично справляются не только с моделированием, но и с играми. Но следует помнить, что в мобильных рабочих станциях (с «задушенным» TDP) профессиональный видеоускоритель среднего класса сможет конкурировать в геймерских дисциплинах только с игровыми видеокартами бюджетного класса. А десктопные профессиональные видеокарты, в свою очередь, хоть и быстрые во всех сценариях работы, стоят заградительно дорого, и уж точно не годятся на роль эконом-варианта для «поработать и поиграть».
Как бы то ни было, на качественной и быстрой оперативной памяти экономить нельзя… Но сегодня — можно! Напоминаем, что с 2 по 20 февраля на все комплекты памяти HyperX Savage DDR4 и HyperX Predator DDR4 в Юлмарте действует скидка 10% по промокоду DDR4FEB. Памяти много не бывает, а производительной и крутой памяти для новых платформ ПК — тем более!
Для получения дополнительной информации о продукции Kingston и HyperX обращайтесь на официальный сайт компании. В выборе своего комплекта HyperX поможет страничка с наглядным пособием.
Можно ли использовать серверную оперативную память вместо обычной.
У меня назрел вопрос о покупке оперативной памяти,но т.к ddr2 8gb на intel карма душит.Поискав во многих интернет магазинах нашёл её на ebay.Главный вопрос,будет ли она работать?
DDR2 действительно не будет (а зачем тебе вообще в 2018 году комп с DDR2?)
Ребята не много не правы. Если материнка поддерживает память с ECC (у меня к примеру была мать ASUS K8V-SV DELUXE держала) то запустится если нет, то ой. Открываем мануал на материнку и внимательно читаем. Или лезем на сайт производителя и там смотрим список совместимой памяти.
8gb DDR2 для desktop насколько я помню вообще не было. Самые популярные планки это 2GB и редко встречались на 4Gb. На ali 2Gb DDR2 можно найти за 400-500 рублей
Не будет! Спецом для серверной материнки она
Где мы забыли оптимизацию?
Ответ sl3w в «Новый компьютер»
Такими темпами вместо компов будут печатные машинки
Ответ zayce в «Новый компьютер»
Ответ на пост «Новый компьютер»
Когда пытаешься найти оставшиеся в продаже видеокарты
Новый компьютер
IT-кот 5. Оперативная память, как у золотой рыбки
Настоящий кот в своей жизни должен сделать три вещи: поесть, поспать и тыгыдык. Но как тогда запомнить в какое время делать какую из вещей? Что ж, придется и это переложить на плечи компьютера.
Для начала попробуем повторить функционал золотой рыбки: будем запоминать только на время работы программы.
Для такого функционала в программе есть два механизма: переменные и поля.
Переменными мы будем называть такое место внутри метода, куда сохраняются те или иные значимые вещи: числа, строки, даты и вот это все. «Вот это все» будем называть данными.
Полями же назовем назовем тоже самое, но уже снаружи метода.
Поля нужны для сохранения информации между методами. Если строго подходить к программированию, то в силу того, что один метод вызывается из другого, а дургой из третьего и т.д., то переменных для хранения информации нам обычно достаточно. Поля же обычно используются для описания более сложных данных, но об этом поговорим в следующих постах.
Пока же перед телом главного метода Main создадим поле «whatNow» (будем хранить в ней описание того что нужно делать сейчас) и «whatDone» (для хранения прошлого действия):
static string whatNow;
static string whatDone;
В теле главного метода зададим начальные значения (текст указываем в двойных кавычках):
Теперь создадим метод, который с учетом наших дел будет говорить нам что делать теперь.
static void WhatToDo()
if (whatNow == «поспать»)
else if (whatNow == «поесть»)
Ну и в самом конце выведем на экран наш текущий план, для чего в методе Main после задания начальных значений спросим компьютер что нам делать и выведем результат на экран:
Если вспомнить предыдущие посты про циклы, то используя их, расписание можно повторять любое количество раз. Ссылка на всю программу должна быть доступна здесь.
спасибо подписчикам за доверие и за терпение. лето, дача, сад и огород были важнее. что поспособствовало обрастанию темы подробностями. интересны ли они только мне, решать читателям.
2. особености ввода-вывода серверов на основе Power
3. как работают LPar-ы, или в чем преимущества Power Hypervisor + HMC
4. VIOS или не VIOS, вот в чём вопрос.
5. AIX, устаревший UNIX, или неувядающий
хороший процессор всего лишь часть производительной ЭВМ. без хорошей памяти и без быстрого доступа к устройствам ввода-вывода не обойтись. мода в 80е была на микропроцессоры, впихивание всех блоков процессора в одной микросхеме. в погоне за дешевизной уменьшали корпус совмещением адресной шины и шины данных. но основные продукты IBM всегда были сложными, а в погоне за высокой производительностью и дорогими. тем более, что люди, привыкшие к процессорам размером в шкаф и ЭВМ размером в спортивный зал, ограничивать себя в производительности не привыкли. поэтому с целью выжать как можно больше производительности шина наоборот расширяется. вводя одновременное выполнение нескольких комманд, нужно все эти команды загрузить. тем более, что операнды комманд тоже нужно загрузить.
первое поколение IBM POWER позволяло одновременное выполнение одной команды загрузки/сохранения/перехода, одной целочисленной команды и одной команды с плавающей запятой. каждая по 32 бит, значит нужны не менее 96 битов для загрузки трех команд из памяти. поэтому шина доступа к памяти сделали шириной в четыре слова, или 128 битов. на схеме это четыре блока кеша данных (data-cache unit / DCU), 32 битов каждый.
на каждой плате четыре пары 32-битовых планок памяти, что позволяет чередованием достичь более высокой скорости доступа к данным. 64-битовые платы памяти нужно устанавливать попарно.
знакомая хитрость, которой пользовались и пользуются все производители сложных микросхем: часть отбракованных на производстве микросхем можно вернуть в строй, понизив тактовую частоту или выключая неработающие блоки. другие удешевляют, жертвуя параметрами. многим знакомы 16-битовые процессоры Intel 8088/80188 с 8-битовой иной данных, или 32-битовые Motorola 68000 и Intel 80386SX с их 16-битовой шиной. процессоры POWER не исключение, существует упрощенный вариант процессора с выполнительными блоками пониженной тактовой частоты и двумя блоками кеша. в них шина к памяти 64 бит и платы памяти можно устанавливать поштучно.
например из первых моделей POWERserver 320 и POWERserver 520 работали на 20 МГц, включали только 32 килобайт кеша, шина к памяти была 64-битовой и оснащались одной картой памяти на 8 MB. зато модели POWERserver 530 и POWERserver 540 работали на 25 и 30 МГц соответственно, включали 64 килобайт кеша, имели 128-битовую шину, а объем памяти начинался с 16 MB (2х8MB) и 64 MB (2x32MB).
доступ к устройствам ввода-вывода осуществляется через отдельную шину System Input/Output (SIO). о ней очень мало известно, но она 64-битовая. последнее приводило немало людей к заблуждению, что это 64-битовая шина MicroChannel, хотя между ними сидит Input/Output Channel Controller (IOCC). предположительно работала на частоте процессора.
шина MCA позволяет обмен 64-битовыми двойными словами через 32-битовую шину при помощи «мультиплексирования». о последнем тоже мало что известно и даже служители IBM порой пишут невероятные вещи. догадываясь по скудным данным в открытом доступе, «мультиплексирование» проводит обмен второго 32-битового слова через линии адреса. таким образом некоторые платы линейки RS/6000 могли достичь теоретический максимум в 80 MB/s, что в серверах PS/2 ограничено до 40 MB/s. встречал упоминания, что на практике можно было достичь около 77 MB/s при обменах блоками в 4 килобайт. все это при частоте шины в 10 МГц. теоретически при частоте в 20 МГц потолок скорости 160 MB/s, но не знаю был ли когда-либо достигнут. жадность IBM проиграла PCI.
также очень мало известно о Serial Optical Channel Converter (SOCC), что появился годом позже на серверах 500 серии и 900 серии. в открытом доступе есть упоминания, что скорость каждого из двух оптических портов была 220 Мбит/с, что в те времена было вдвое быстрее самого быстрого наличного сетевого стандарта FDDI. устройства поддерживают связь точка-точка между машинами, но IBM указывает, что можно купить коммутатор у партнера. операционная система AIX поддерживает связь по протоколу TCP/IP через Serial Optical Link.
с улучшением технологии изготовления микросхем появляются некоторые улучшения производительности за счет повышения тактовой частоты. за этим можно подозревать связанную с частотой процессора скорость шины SIO, но потверждения тем подозрениям вряд ли удастся найти. процессоры POWER работали на частотах 20 МГц, 25 МГц и 30 МГц. первое улучшение (POWER+) достигло частоты в 25 МГц, 33 МГц и 41 МГц. второе улучшение (POWER++) дало 25 МГц, 33 МГц, 41 МГц, 50 МГц и 62,5 МГц. на таких относительно высоких частотах задержка доступа к памяти уже является основным узким местом. это приводит к замене плат памяти на новых моделях.
машины POWERserver 970 и POWERserver 980 добавляют второй IOCC на шине SIO, что дает вторую шину MicroChannel (2x 80 MB/s) и еще два порта SOCC.
на смену первому поколению приходит второе. для дальнейшего повышения производительности повышается суперскалярность. в процессорах POWER2 уже два АЛУ и два блока вычислении с плавающей запятой. их нужно запитывать и шина к памяти расширяется до 256 бит, а карты памяти лучше добавлять группами по четыре. хотя возможность установить всего лишь две карты памяти предусмотрена, но это сужает шину до 128 бит с потерей производительности.
вторая шина MicroChannel в модели POWERserver 990 уже не добавляется по заказу, а установлена штатно.