Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях

Рулевой механизм тракторов

Тип рулевого механизма зависит от общего принципа действия рулевого управления. Поэтому их также можно классифицировать как: механический; механический с усилителем и гидрообъемный.

Рулевой механизм механического типа преобразует вращение рулевого колеса в угловое движение рулевой сошки, шарнирно соединенной с продольной тягой рулевой трапеции или непосредственно с ее поворотным рычагом.

Рулевой механизм, как правило, представляет собой понижающий редуктор с достаточно большим передаточным числом.

По типу выполнения различают шестеренные, червячные, винтовые и смешанные рулевые механизмы.

Поэтому рулевые механизмы обычно выполняются на пределе обратимости с относительно высоким прямым КПД (0,75. 0,85) и пониженным обратным (0,5. 0,65).

В шестеренном двойном рулевом м е х а н и з м е (рис 8.5,а) передача усилия от рулевого колеса 8 к рулевой сошке / с поперечной рулевой тягой 9 осуществляется двумя парами конических шестерен: первая пара шестерен 6 обычная, а вторая состоит из ведущей шестерни 4 и ведомой 3, выполненной в виде сектора. Соединяют элементы передачи внешний рулевой вал 7 и внутренние валы 5 и 2. Однако вследствие повышенных габаритов редуктора, относительно малого передаточного числа и полной обратимости передачи (прямой и обратный КПД равны), шестеренные рулевые механизмы имеют очень ограниченное применение.

Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Смотреть фото Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Смотреть картинку Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Картинка про Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Фото Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобиляхРис. 8.5. Кинематическая схема рулевых механизмов

В червячном рулевом механизме (рис. 8.5,6), где рулевое колесо 6 и его вал 5 соединены с обычным цилиндрическим червяком 4, находящимся в зацеплении с сектором 3 червячного колеса. Рулевая сошка 2 с продольной тягой / соединены с сектором 3 посредством соединительного вала 7.

При наличии одного или двух спаренных управляемых колес сектор 3 устанавливается непосредственно на хвостовике вертикального поворотного вала 7.

Встречаются рулевые механизмы (рис. 8.5,в), в которых червяк 3 имеет зацепление с боковым червячным сектором 2, что обеспечивает большую площадь их контакта, а следовательно, меньшее давление в зубьях, способствующее уменьшению их износа. Как правило, сошка / непосредственно крепится на хвостовике вала сектора 2.

В двух рассмотренных рулевых механизмах (см. рис. 8.5,6 и в) предусмотрено обязательное регулирование зазора в червячной паре.

В рулевом механизме с глобоидным червяком и радиальным двух- или трехгребневым роликом (рис. 8.5,г) при повороте рулевого вала 1 глобоидный червяк 2 заставляет поворачиваться ролик 3 (в этой схеме двухгребневой), перемещая его по дуге вместе с поворотной головкой 4 вала 7 сошки 6. Ролик 3 устанавливается на оси 8 обычно посредством игольчатых или шариковых подшипников 9, что снижает потери на трение в рулевом механизме. Поэтому подобные рулевые механизмы имеют более высокие значения прямого и обратного КПД.

Однако эти механизмы требуют двух регулировок: осевого зазора (посредством осевого перемещения червяка 2) и зацепления червячной пары (перемещением вала 7 рулевой сошки для изменения расстояния между центрами осей червяка 2 и ролика 3). Последнее обычно осуществляется установкой вала 7 на промежуточной эксцентриковой втулке 5 или предварительным боковым смещением на 6. 6,5 мм оси вала 7 сошки вместе с роликом 3 относительно проекции оси червяка 2.

Следует отметить, что рулевые механизмы с глобоидным червяком и роликом имеют переменное передаточное число, определяемое отношением числа зубьев червячного колеса (ролик как его сектор) к числу заходов червяка. Обычно применяется однозаходный червяк. Наибольшее передаточное число рулевой механизм имеет при прямолинейном движении трактора. При повороте ролика 3 на большие углы он сопрягается с крайними витками червяка 2 и передаточное число рулевого механизма несколько уменьшается, что увеличивает усилие на рулевом колесе. В данном случае это способствует повышению безопасности движения, как сигнал трактористу об опасности крутых поворотов трактора, особенно при повышенных скоростях движения.

Механический рулевой механизм с усилителем применяют на колесных тракторах, начиная с тягового класса 0,9 и выше, с целью облегчения управления. Так, при его отсутствии для поворота трактора на мягкой почве или его выезде из борозды к рулевому колесу приходится иногда прикладывать усилие до 400. 500 Н, что значительно превышает допустимую норму. Без усилителя затруднен поворот с малым радиусом, так как необходимо увеличение скорости поворота рулевого колеса при ограниценном времени движения трактора (до 2,5 с). Это необходимо для уменьшения ширины поворотной полосы МТА при проведении различных сельскохозяйственных и других работ.

Гидравлические усилители с золотниковыми распределителями получили наиболее широкое применение в отечественном тракторостроении. В них в качестве рабочей жидкости применяют обычно минеральное масло.

Положительными качествами гидравлических усилителей являются:

— малое время срабатывания;

— малые габаритные размеры;

— поглощение ударов при наезде управляемых колес на препятствие, предотвращающее их передачу на рулевое колесо;

Определенными их недостатками являются:

— некоторое ухудшение стабилизации управляемых колес из-за противодавления масла действию на них стабилизирующих моментов;

— необходимость применения высококачественных уплотнений в гидросистеме усилителя, исключающих возможность подтекания масла, приводящее к отказу в работе.

Питание гидроусилителя производится от отдельного гидронасоса с автономной гидросистемой или от насоса гидронавесной системы трактора через распределительный клапан гидропотока.

Исполнительными механизмами гидроусилителя обычно являются гидроцилиндры с высокими рабочими давлениями порядка 6. 10 МПа и выше, делающими их достаточно компактными.

В рулевом управлении с гидроусилителем (рис. 8.6,а) рулевой привод условно представлен двухплечим рычагом 2, устанавливающим положение управляемого колеса 1 и рулевой трапеции (отсутствующей на схеме).

Рулевой механизм представлен рулевым колесом 7 и рулевой сошкой 6, управляющей золотником 14 распределителя 15 гидросистемы усилителя. Корпус гидроцилиндра 3 двойного действия шарнирно прикреплен к балке переднего моста трактора, а его шток поршня шарнирно соединен с рычагом 2 рулевого привода. Гидравлическая система состоит из бака 8 для масла, нагнетательного гидронасоса 9 с перепускным клапаном 10, гидроаккумулятора 11, нагнетательного 12 и сливных 13 трубопроводов, гидрораспределителя 15, а также трубопроводов 4, соединяющих последний с соответствующими полостями гидроцилиндра 3.

Гидроаккумулятор 11 служит для поддержания постоянства давления в нагнетательном трубопроводе 12 гидросистемы вне зависимости от режима работы насоса 9, получающего энергию от двигателя трактора.

Центрирующие пружины 5 в распределителе 15 улучшают процесс управления трактором, ограничивая усилие на рулевом колесе 7, при котором включается гидроусилитель. Кроме этого, они удерживают золотник 14 в нейтральном положении при наезде одного из управляемых колес на неровности пути, а также при разгоне и торможении трактора, что способствует стабилизации его движения.

Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Смотреть фото Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Смотреть картинку Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Картинка про Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Фото Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях

Рис. 8.6. Схема рулевого управления трактора с гидроусилителем

В этом положении золотника полости гидроцилиндра 5 и их присоединительные трубопроводы 4 отсоединены от нагнетательного трубопровода 12, что соответствует выключенному состоянию гидроусилителя. Постоянно работающий насос 9 в это время работает на перепуск масла через разгрузочный клапан 10 и подпитку гидроаккумулятора 11.

Большим преимуществом подобной схемы гидроусилителя является его постоянная готовность к действию, обеспечивающая минимальное время срабатывания.

При повороте рулевого колеса 7 сошка б-смещает золотник 14 в корпусе распределителя 15 из нейтрального положения вперед или назад (в зависимости от требуемого направления поворота трактора). При этом одновременно нагнетательный трубопровод 12 соединится с одним из трубопроводов 4, подающим масло под давлением в необходимую нагнетательную полость гидроцилиндра 3, а другой трубопровод 4 соединится для слива масла из другой полости цилиндра 3 в один из сливных трубопроводов 13. Под действием давления масла поршень гидроцилиндра 3 через шток передает усилие на рычаг 2 в направлении, необходимом для поворота управляемого колеса 1.

Корпус распределителя 15 подвижный, так как посредством жесткой тяги 16 обратной связи соединен с рычагом 2. При этом направление движения корпуса распределителя 15 совпадает с направлением движения золотника 14. Поэтому, если повернуть рулевое колесо 7 в какую-либо сторону и прекратить вращение, то подача масла в нагнетательную полость гидроцилиндра 3 прекратится, а трактор будет поворачиваться с постоянным радиусом. Для совершения более крутого поворота трактора необходимо продолжать вращение рулевого колеса 7.

Таким образом, в данной схеме гидроусилителя следящее действие осуществляется по перемещению (вращению) рулевого колеса, отличительной чертой которого является чисто механическая обратная связь посредством тяги 16.

При отказе в работе гидронасоса 9 гидроусилитель некоторое время будет работать за счет давления жидкости в гидроаккумуляторе 11, а затем поворот трактора возможен только за счет мускульной силы тракториста с помощью рулевого механизма с продольной тягой для перемещения золотника 14. При этом повышение усилия для управления трактором обусловлено и меньшим передаточным числом рулевого механизма по сравнению с обычным. Одновременно возрастает свободный ход рулевого колеса 7, так как требуется дополнительное перемещение золотника 14 до его упора в дно или крышку корпуса распределителя 15, чтобы затем через тягу 16 воздействовать на рычаг 2.

Следящее действие усилителя в значительной степени зависит от конструкции его распределителя. Следящее действие по перемещению рулевого колеса было рассмотрено выше (см. рис. 8.6,а). Наряду с положительными качествами этого распределителя (пропорциональное кинематическое соответствие между поворотом рулевого колеса и поворотом управляемых колес) он имеет следующие недостатки: из-за быстродействия системы тракторист не ощущает момент включения усилителя, а резкие удары управляемых колес, передающиеся через тягу 16 на корпус 15 распределителя, несмотря на наличие пружин 5, могут производить самопроизвольное включение усилителя, что ухудшает стабильность движения трактора.

В усилителе, обеспечивающем следящее действие по усилию на рулевом колесе при повороте управляемых колес, обратная связь обеспечивается изменением давления масла в системе его распределителя.

На рис. 8.6,6 представлена принципиальная схема распределителя с открытым центром, в корпусе 1 которого установлены реактивные шайбы (иногда плунжеры) 6 и 9, поджатые центрирующими пружинами 7 и 10. Золотник 2 распределителя показан в нейтральном положении, когда вся система усилителя заполнена маслом. Масло, поступающее из центрального нагнетательного трубопровода 8, проходит по каналам в корпусе 1 и сливается через выходной трубопровод 4 обратно в бак гидросистемы.

В обоих полостях гидроцилиндра (не показан), соединенных с распределителем трубопроводами 3 и 5, устанавливается одинаковое давление слива.

При увеличении сопротивления повороту управляемых колес увеличивается и давление масла во всей системе усилителя и в корпусе 1 распределителя. Таким образом, тракторист реально ощущает процесс поворота управляемых колес, т.е. “чувствует дорогу”.

При прекращении поворота рулевого колеса прекратится рост давления в корпусе 1 распределителя, произойдет его выравнивание в обеих полостях с реактивными шайбами б и 9, и золотник 2 вернется в нейтральное положение. Объемы масла в полостях цилиндра обеспечат постоянство положения управляемых колес для движения трактора с постоянным радиусом поворота.

Комбинированный распределитель осуществляет следящее действие как по перемещению, так и по силе сопротивления повороту рулевого колеса. При установке распределителя, представленного на схеме рис. 8.6,6, в схему на рис. 8.6,а получим схему рулевого управления трактора с гидроусилителем комбинированного следящего действия.

По типу компоновки основных элементов гидроусилителя (распределителя и силового (силовых) гидроцилиндров) с рулевым механизмом различают две принципиальные конструктивные схемы: моноблочную и раздельную. При этом необходимо отметить, что элементы гидравлической схемы усилителя (гидронасос с перепускным клапаном, гидроаккумулятор, масляный радиатор и масляный бак с фильтром), как правило, устанавливаются отдельно от рулевого управления.

При моноблочной компоновке элементов гидроусилителя распределитель, гидроцилиндр и рулевой механизм скомпонованы в одном общем картере, что уменьшает число и длину трубопроводов гидросистемы, а также число промежуточных механических передач. Иногда картер служит даже полостью масляного бака.

Помимо этого, установка распределителя непосредственно 7 на валу рулевого колеса значительно повышает чувствительность системы, так как между ними практически нет промежуточных деталей, снижающих скорость прохождения исполнительного сигнала.

Недостатками моноблочной схемы являются повышенная нагрузка всех деталей рулевого механизма от усилия гидроцилиндра, а также сложности в модернизации и унификации агрегатов и ремонте гидроусилителя.

При раздельной компоновке элементов гидроусилителя гидроцилиндр всегда устанавливается отдельно от рулевого механизма, а распределитель может устанавливаться на картере рулевого механизма, на гидроцилиндре или непосредственно в тяге к рулевому приводу.

Раздельная компоновка элементов гидроусилителя применяется обычно для поворота трактора 4К46 с шарнирно сочлененными полурамами их остовов и неповоротными колесами относительно них. На рис. 8.7 показано действие гидроусилителя при повороте полурам 7 и 9 для движения трактора вправо.

Отличительной особенностью системы подачи масла в гидроцилиндры У 1 и его отвода из них является установка на них клапанных коробок 14 с двумя запорными клапанами 12, поджатых пружинами 15 и не позволяющих поршню 10 произвольно перемещаться под действием внешних сил. Между торцами клапанов 12 помещен поршень-толкатель 13, задачей которого является открытие запорного клапана 12 сливной полости гидроцилиндра 11 при совершении поворота трактора. Полости гидроцилиндров 11 от высокого давления предохраняют клапаны 16, соединяющие их со сливными трубопроводами.

Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Смотреть фото Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Смотреть картинку Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Картинка про Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Фото Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях

Рис. 8.7. Схема рулевого управления трактора с гидроусилителем раздельного типа

При прямолинейном движении трактора золотник 18 находится в нейтральном положении и гидронасос / перекачивает масло из бака 2 через распределитель 17 обратно в бак 2. Предохранительный клапан 19 ограничивает давление масла до 10 МПа. Полости гидроцилиндров 11 закрыты клапанами 12, что удерживает полурамы 7 и 9 от поворота вокруг оси 8.

При повороте рулевого колеса 3 червяк 4, поворачиваясь относительно неподвижного сектора 5, перемещает золотник 18, соответствую щие нагнетательная и сливная полости распределителя 17 соединяются с клапанными коробками 14 гидроцилиндров 11.

Например, при повороте рулевого колеса 3 вправо золотник 18 (как показано на схеме) направляет поток масла под давлением по трубопроводу, указанному стрелкой, от распределителя 17 к клапанным коробкам 14 обоих гидроцилиндров 11. При этом в правой клапанной коробке 14 (верхней по схеме) давлением масла открыт клапан 12 для пропуска его в подпоршневую полость Б гидроцилиндра 11 и одновременно это же давление масла, действуя на поршень-толкатель 13, открывает противоположный клапан 12 для слива масла из надпоршневой полости А в cj/ивной трубопровод и обратно в бак. Аналогично левая клапанная коробка 14 обеспечивает подачу масла в полость А гидроцилиндра 11 и его слив из полости Б в тот же сливной трубопровод. Поршни гидроцилиндров 11 перемещаются в противоположные стороны, чем и обеспечивается взаимный разворот полурам 7 и 9 для поворота трактора вправо.

При повороте рулевого колеса 3 влево золотник 18 переместится влево, все процессы будут происходить в обратной последовательности и трактор повернется влево.

Тяга 6 обратной связи, воздействуя на рулевую сошку сектора 5, стремится вернуть золотник 18 распределителя 77 в нейтральное положение. Поэтому при прекращении вращения рулевого колеса 3 золотник 18 возвратится в нейтральное положение, давление масла на поршень-толкатель 13 и клапаны 12 уравняются. Последние закроют полости гидроцилиндров 11, фиксируя тем самым полурамы 7 и 9 в положении соответствующего поворота трактора с постоянным радиусом. Для дальнейшего поворота трактора необходимо вновь повернуть рулевое колесо 3.

Так как в данной схеме гидроусилителя применен распределитель 17 с центрирующими плунжерами, принцип действия которых- рассмотрен выше, то при увеличении момента сопротивления развороту полурам 7 и 9 возрастает усилие для поворота рулевого колеса 3. Следовательно, гидроусилитель имеет следящее действие и по усилию на рулевом колесе, а у тракториста при повороте трактора создается «чувство дороги».

Повышение технического уровня трактора неразрывно связано с совершенствование системы его управления.

В рассмотренных механических и гидромеханических рулевых управлениях рулевой привод и рулевой механизм соединены между собой механической связью, которая в ряде случаев осложняет комплектацию МТА навесными машинами-орудиями.

Источник

Рулевое управление

Рулевое управление предназначено для поддержания движения трактора (автомобиля) по заданному водителем направлению.

Рулевое управление должно быть легким и удобным, для чего усилие на рулевом колесе и угол его поворота должны быть ограниченными. Кроме того, необходимо, чтобы рулевое управление обеспечивало правильную кинематику поворота и безопасность движения, а поворот колес происходил так, чтобы их качение не вызывало проскальзывания.
Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Смотреть фото Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Смотреть картинку Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Картинка про Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Фото Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях Рис. 1. Кинематика поворота колесных тракторов и автомобилей:

а — передних колес относительно переднего моста; б — одинарного переднего колеса; в — одной части рамы относительно другой части, соединенных шарниром.

На тракторах и автомобилях управление осуществляется путем поворота: передних колес относительно переднего моста (рис. 1, а, 6) — на универсально-пропашных тракторах 4≠4, 4≠2, З≠2, всех легковых и грузовых автомобилях; полурам, образующих несущую систему трактора, совместно с колесами относительно соединяющего их вертикального шарнира (рис. 1, в) — на тракторах 4=4 общего назначения (К-701, Т-150К); передних и задних колес относительно их мостов (все колеса управляемые) — на тракторах 4=4, автомобилях высокой проходимости.

В зависимости от расположения рулевого колеса различают правое и левое рулевое управление. При правостороннем движении транспорта по дорогам и улицам левое рулевое управление способствует лучшей обзорности пути.
Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Смотреть фото Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Смотреть картинку Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Картинка про Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях. Фото Перечислите типы рулевого механизма применяемые в колесных тракторах и автомобилях Рис. 2. Типы рулевых управлений:

а — рулевое управление с совмещенным рулевым колесом и рулевым механизмом, цельной трапецией и механическим приводом; б — рулевое управление с раздельным рулевым колесом и рулевым механизмом, расчлененной трапецией и механическим приводом с гидроусилителем: 1 — рулевое колесо; 2 — сошка; 3 — рулевой механизм; 4 — продольная тяга; 5, 7 — поворотные рычаги; 6 — поперечная тяга; 8 — цапфа колеса; 9 — карданная передача; 10 — гидроусилитель; 11 — поворотный вал сошки; в — объемное гидравлическое рулевое управление (ОГРУ): 1 — насос питания; 2 — предохранительный клапан; 3 — насос-дозатор; 4 — рулевое колесо; 5 — гидравлический силовой цилиндр; 6 — трубопроводы; 7 — поперечная тяга; 8 — бак.

Рулевое управление состоит из рулевого механизма 3 (рис. 2, а) и рулевого привода. Посредством рулевого механизма усилие, приложенное водителем к рулевому колесу 1, передастся рулевому приводу. Рулевой привод осуществляет передачу усилий от рулевого механизма к управляемым колесам или полурамам трактора. Рулевые приводы могут быть механическими, гидравлическими и электрическими. У автомобилей и тракторов с передними управляемыми колесами механический привод передает усилие сошкой 2 к поворотным рычагам 5, 7 рулевой трапеции. Рулевая трапеция, состоящая из поперечной рулевой тяги 6 с поворотными рычагами 5 и 7, является частью рулевого привода и предназначена для достижения необходимого соотношения между углами поворота управляемых колес.

В качестве рулевых механизмов используются передачи червяк — ролик (ГАЗ-53А, УАЗ, ГАЗ-66, «Волга», «Москвич», «Жигули», «Запорожец»), червяк — сектор (КрАЗ-257, Урал-375Д, МАЗ-200, К-700, К-701, Т-150К, МТЗ-80, МТЗ-82, Т-40М, Т-40АМ и др.), винт с гайкой (ЗИЛ-130, Т-25А), винт с гайкой и рейка с зубчатым сектором (ЗИЛ-131, КрАЗ-255Б, БелАЗ-540), конические шестерни (Т-16М).

По взаимному расположению рулевого колеса и рулевого механизма различают рулевые управления с совмещенным (рис. 2, а) или раздельным (рис. 2, 6) рулевым колесом и рулевым механизмом. При совмещенном рулевом управлении ведущий элемент рулевого механизма 3 устанавливается на нижнем конце вала рулевого колеса 1, а при раздельном соединяется с ним через карданную передачу 9. К первому типу относятся рулевые управления автомобилей ГАЗ-5ЗА, «Волга», «Жигули», «Москвич», «Запорожец», тракторов К-701, Т-150К, Т-25А; ко второму — автомобилей БелАЗ-540, ЗИЛ-131, ЗИЛ-130, УАЗ, тракторов МТЗ-80, Т-40М/40АМ, Т-28Х4М и др.

По месту расположения рулевой трапеции относительно управляемого моста различают рулевые приводы с передним (рис. 2, в) и задним (рис. 2, а) расположением трапеции. Трапеция с передним расположением применена на автомобилях ГАЗ-66, УАЗ-452, тракторах ЮМЗ-6М/6Л; с задним — на автомобилях ГАЗ-5ЗА, ЗИЛ-130, УАЗ-451М, тракторах МТЗ-80/82, Т-40М/АМ и др.

Рычаги 5 и 7 (рис. 2, а) поворотных цапф объединяются одной поперечной тягой 6 или с двумя шарнирами, также соединенными между собой тягой. В первом случае тралению называют цельной, а во втором — расчлененной. Расчлененные трапеции применяются на легковых автомобилях, имеющих независимую подвеску управляемых колес, а также на колесных универсальных тракторах МТЗ-80, Т-40М. В рулевом управлении с цельной трапецией привод к трапеции осуществляется продольной тягой 4; привод к расчлененной трапеции — продольной тягой, продольным валом сошки или сошкой 2, установленной на поворотном валу 11 рулевого механизма.

Рулевые управления оснащаются усилителями рулевого привода, предназначенными для создания дополнительного усилия с целью облегчения управления трактором (автомобилем). Исключение составляют легковые и некоторые грузовые автомобили и тракторы тяговых классов 6—9 кН. Наиболее распространены гидравлические и пневматические усилители.

Гидравлические усилители разнообразны по конструкции, их различают по целевому использованию насоса, расположению агрегатов и возможности применения механического привода в качестве дублерного.

По целевому использованию насоса усилители делятся на автономного и совмещенного действия. У первых насос питает только гидравлическую систему усилителя, у вторых также и других потребителей. Первая группа усилителей более распространена и применяется на тракторах МТЗ-80/82, Т-150К, К-701, автомобилях ЗИЛ-130, ЗИЛ-131, ГАЗ-66 и др. Ко второй группе относятся усилители тракторов Т-40М/40АМ (насос используется одновременно для гидравлической навесной системы), автомобилей БелАЗ (насос приводит в действие гидросистему опрокидывающего механизма кузова) и др.

По расположению агрегатов различают следующие схемы: гидроцилиндр распределитель и рулевой механизм образуют общий узел (МТЗ-80, Т-40М, ЗИЛ-130 и др.); рулевой механизм и распределитель выполнены в одном агрегате, гидроцилиндр — раздельно (Т-150К, К-701); гидроцилиндр и распределитель выполнены в общем узле отдельно от рулевого механизма (МАЗ-500, БелАЗ-540 и др.); гидроцилиндр, распределитель и рулевой механизм являются отдельными узлами (ГАЗ-66).

По применению механического привода в качестве дублерного различают схемы, позволяющие использовать механический привод при неработающем двигателе (или отказе усилителя) и исключающие такую возможность. К первым относятся все тракторы и автомобили с передними управляемыми колесами (см. рис. 1. а, б), ко вторым — тракторы 4=4 с шарнирно сочлененной рамой (К-701, Т-150К).

Новые конструкции объемного гидравлического рулевого управления (ОГРУ) выполняются по двум типовым схемам: одноконтурной, для тракторов класса 9—20 кН и двухконтурной для тракторов класса 30—50 кН. Объемное гидравлическое рулевое управление (одноконтурное) включает насос 1 (см. рис. 2, в), насос-дозатор 3, выполненный в одном узле с рулевым колесом 4, гидравлический силовой цилиндр 5, предохранительный клапан 2 и соединяющие эти устройства трубопроводы 6. Насос-дозатор 3 регулирует поступление рабочей жидкости в гидравлический силовой цилиндр 5 при работающем насосе питания 1 и может использоваться в качестве насоса питания для управления трактором при неработающем двигателе. Эта схема имеет ряд преимуществ: механические связи минимальны (только трапеция управления), обеспечивается управление машиной при неработающем двигателе и отключенном насосе питания; уменьшается масса конструкции; устраняется многообразие устройств рулевого управления тракторов. [Гуревич А.М., Сорокин Е.М. Тракторы и автомобили. 1978 г.]

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *