Первую программно управляемую вычислительную машину изобрел
Первые вычислительные машины
Первую программируемую вычислительную машину попытался создать Чарльз Бэббидж в XIX веке. Она осталась недостроенной. Но в XX веке идеи Беббиджа воплощенные уже на новом уровне перевернули мир.
Первый шаг к созданию современных компьютеров сделал английский математик Чарльз Беббидж. В 1822 году он построил вычислительное устройство, названное им Разностной Машиной (Difference Engine). Машина работала на основе известного в математике метода конечных разностей. Difference Engine позволяла вычислять значения многочленов, выполняя только операцию сложения и не производя при этом умножение и деление. Поскольку Разностная Машина имела ограниченные возможности, дальнейшего развития она не получила. Однако специалисты отмечают, что для того времени это был прорыв в вычислительной технике.Бэббидж не остановился на достигнутом и с 1830 года занялся разработкой программируемой машины, которую назвал Аналитической (Analytical Engine). К сожалению, математик не смог осуществить задуманного, поскольку Analytical Engine оказалась слишком сложна для техники того времени. Но идеи, которые он озвучил, были действительно революционными. Бэббидж придумал практически современный компьютер, но не в электронном, а в механическом исполнении.
По замыслу ученого, машина должна была состоять из «склада», предназначенного для хранения чисел (то, что мы называем память компьютера). Из «Мельницы», которая представляла собой арифметическое устройство (процессор). Бэббидж также задумал устройство, управляющее последовательностью операций в машине (хотя математик никак его не назвал, сейчас используется термин «устройство управления»). Машины также должна была быть осащена устройствами ввода и вывода данных.
По замыслу Бэббиджа на вход машине должны были поступать два потока перфокарт, operation card (операционные карты) и variable card (карты переменных). Задача первых — управлять процессом обработки данных, которые должны были записываться на карты переменных. Бэббидж хотел, чтобы информация заносилась на перфокарты путем пробивки отверстий. Из операционных карт можно было составить библиотеку функций. Кроме того, Analytical Engine должна была содержать устройство печати и устройство вывода результатов на перфокарты для последующего использования.
В конце XX английские ученые построили машину Бэббиджа и даже придуманный им «принтер». В идеях великого ученого была обнаужена всего одна ошибка.
«Мark-1»
ENIAC
Полумеханические компьютеры, такие как Mark — 1, сменили новые, более мощные машины. Одна из них — Electronical Numerical Integrator and Calculator, сокращенно — ENIAC. Этот компьютер на основе электронных ламп был сконструирован в 1946 году. В его конструкцию входило 18 тысяч вакуумных ламп и около 1500 реле, при этом машина занимала отдельное помещение площадью в 85 квадратных метров, весила 30 тонн и потребляла 150 киловатт энергии.
В компьютере ENIAC впервые перфолента для хранения программ была заменена на перфокарту. Во время работы перфоленты часто рвались, приходилось либо склеивать их, либо менять целиком. Зачастую запасных не было, поэтому нужно было изготовлять новые. Все это доставляло большие неудобства. С перфокартами процесс намного упростился. Если испортилась одна пластинка, то ее можно было легко заменить.
Однако, несмотря на все недостатки, ENIAC своим появлением открыл эру компьютеров.
В СССР первый компьютер был сконструирован в Киеве в 1951 году. Он назывался «МЭВМ» (маленькая электронная вычислительная машина). Уже в 1952 году была построена машина «БЭВМ» (большая электронная вычислительная машина). Этими проектами руководил академик Сергей Лебедев
Чарльз Беббидж считается основателем современной вычислительной техники. В работе Чарльза Бэббиджа прослеживается два направления: разностная и аналитическая вычислительная машины. Аналитическая машина Чарльза Бэббиджа использует принцип программного управления и является предшественницей современных ЭВМ.
Первая небольшая модель аппарата Чарльза Бэббиджа
В 1822 году Чарльз Бэббидж создал первую небольшую модель своего аппарата, получившего название «разностная машина». Механизм разностной машины состоял из валиков и шестерней, вращаемых вручную при помощи специального рычага. Разностная машина могла управлять шестизначными числами и выражать в числах любую функцию, которая имела постоянную вторую разность. Ценность разностной машины Чарльза Бэббиджа в том, что она могла не только производить один раз заданное действие, но и осуществлять целую программу вычислений. Сам Бэббидж достаточно ясно представлял назначение своей машины. Он пропагандировал использование математических методов в различных областях науки и предсказывал при этом широкое применение вычислительных машин.
Первая в мире разностная аналитическая вычислительная машина Чарльза Бэббиджа
Первая в мире разностная аналитическая вычислительная машина Чарльза Бэббиджа
Принцип аналитической машины Чарльза Бэббиджа
Аналитическая машина Чарльза Бэббиджа использует принцип программного управления и является предшественницей современных ЭВМ.
Основные части аналитической машины
Аналитическая машина состояла из следующих четырех основных частей:
Аналитическая машина так и не была изготовлена Чарльзом Бэббджем. Кроме хронической нехватки финансовых средств, важнейшая из причин — технологическая. Тогда не умели обрабатывать металл с высокой степенью точности и с высокой производительностью — а для реализации проекта требовались тысячи одних только зубчатых колес.
Большое влияние на посмертную судьбу машины оказал генерал Бэббидж, сын изобретателя. Выйдя в отставку в 1874 году, он несколько лет посвятил изучению отцовского наследия, а в 1880 году начал работу по восстановлению Difference Engine в «железе». Работа продолжалась с переменным успехом до 1896 г. В конце концов к 1904 году был создан небольшой фрагмент машины, который печатал результаты вычислений. Кроме того, Бэббидж-младший сделал несколько мини-копий Difference Engine и разослал их по всему миру.
В 1991 году, к двухсотлетию со дня рождения ученого, сотрудники лондонского Музея науки воссоздали по его чертежам 2,6-тонную «разностную машину № 2», а в 2000 году — еще и 3,5-тонный принтер Бэббиджа. Оба устройства, изготовленные по технологиям середины XIX века, превосходно работают — в расчётах Бэббиджа было найдено всего две ошибки.
Электронно-вычислительная техника: с чего все началось
Персональный компьютер – то, без чего невозможно представить жизнь современного человека. Но не всегда подобные устройства присутствовали в реальности. Развитие таких устройств началось задолго до появления электричества.
В данной статье будет рассказано о том, каким образом компьютеры и другие «виртуальные машины» пришли в современность. Информация будет одинаково полезна и взрослым, и школьникам.
Вычислительная техника – определение
Сначала требуется понять, что собой представляет ЭВМ. Лишь в этом случае получится выбрать правильное направление в изучении истории.
Трактуется соответствующий термин совершенно по-разному. В широком смысле это – техустройства, включающие в свой состав:
Данные «компоненты» используются для обработки информации и различных процессов. Помогают описывать всевозможные явления. Проводят вычисления, включая математические.
В качестве вычислительной машины сегодня подразумевают компьютеры – персональные, ноутбуки или суперкомпьютеры. Современные технологии позволяют классифицировать все ЭВМ на разные категории.
Классификация электронно-вычислительных устройств
Каждый вычислительный прибор предлагает человеку те или иные возможности. Нынешнее развитие технологий и прогресса предусматривает разделение рассматриваемых машин на следующие области:
Это не самая полная классификация. Из года в год она расширяется. Но перечисленные «блоки» являются наиболее распространенными. Их считают основными.
Этапы развития
В истории развития ЭВМ принято выделять несколько ключевых этапов. К ним относят:
Это условное разделение по хронологическим принципам. Пока использовалась одна вычислительная машина, люди активно развивали другие подобные устройства.
С чего все началось
Вычислительная техника появилась задолго до современности. Все действия человека требовали проведения подсчетов. Пример – обмен, разделение добычи, формирование запасов для дальнейшей жизни.
Раньше наиболее распространенным способом подсчета случило использование собственных пальцев. Позже человек стал задействовать палки, узлы и камни. Но с развитием прогресса требовалось выполнение более сложных задач. Так людям приходилось придумывать различные приспособления, которые смогли бы посодействовать в реализации поставленных целей.
История сложилась так, что в странах были разные меры:
Конвертация из одной системы в другую требовали наличия определенных знаний и навыков. Этим занимались специально обученные лица. Их нередко вызывали из других стран. Так система вычисления потребовала изобретения первых машин вычислительного характера.
Ручной этап
Как только человечество стало нуждаться в вычислениях, оно начало активно использовать различные предметы для этого. И с течением времени изобретать спецустройства для подсчетов.
Изначально применялись палочки, пальцы, узелки и им подобные мелкие предметы. Первая «машина», которая облегчила вычисления – это специальная доска. Называется «абак». Появилась в 5-6 веках до нашей эры.
Здесь процесс вычисления осуществлялся за счет перемещения камешков и костей в углубления бронзовых досок. Они также могли изготавливаться из камня или слоновой кости. С течением времени «абак» получил несколько полосок и колонок. В Греции такое устройство появилось в 5 веке до Н. Э.. Японцы называли такую машину «серобян», а китайцы – «суанпан».
На Руси примерно в 15 веке появился «дощатый счет», который внешне напоминал нынешние счеты. А в 9 веке в Индии изобрели позиционную систему вычисления.
В начале 17 века Леонардо да Винчи смог создать 13-разрядное устройство для подсчетов сумм. Оно включало в себя десятизубные кольца. В основе были стержни, на которых крепились 2 зубчатых колесика. Они отличались по размеру друг от друга.
Механический этап
Эволюция ЭВМ напрямую зависела от развития человечества. В 17 веке математические подсчеты стали ключевыми в развитии истории. Это привело к изобретению новых устройств для расчетов. Но до компьютеров было еще далеко.
В 17 веке Паскаль смог сделать «суммирующую» машинку, которую назвали Паскалиной. Она умела:
А в 1670-80-х годах Лейбниц сконструировал счетную машину, которая умела выполнять все арифметические действия. За последующие 200 лет ученые изобрели несколько аналогичных «девайсов». Но все они не получили широкого распространения. Связано это с тем, что машины работали долго.
В СССР в 1879 году Чебышев изобрел счетную машину. Она справлялась с вычитанием и сложением многозначных чисел. Огромную популярность приобрел некий арифмометр. Его изобрел инженер из Питера Однер в 1874. Работала конструкция достаточно быстро.
Электромеханический этап
Активное развитие вычислительной техники началось именно в 19 веке. В 30-х годах 20-го столетия в свет в СССР вышел арифмометр, который приняли за совершенный. Назывался «Феликс». Использовались такие устройства до 1978 года.
Электромеханический этап в истории является не самым долгим. Он длился порядка 60 лет. Начинается с созданием первого в мире табулятора. Это устройство появилось, благодаря инженеру Гурману Холлериту. Произошло это в 1887 году. Машина включала в себя:
Девайс считывал и занимался сортировкой статистических записей, которые делались на перфокартах. Позже фирма Голлерита (Холлерита) стала основой IBM.
Ванновар Буш в 1930 году смог представить миру дифференциальный анализатор. Для его работы требовалось электричество, а для хранения информации не удавалось обходить без электронных ламп. Задействовалась машинка для проведения сложных математических подсчетов.
В 1936 году Алан Тьюринг разработал устройство, которое стало основой современных компьютеров. «Девайс» умел пошагово выполнять операции, запрограммированные во внутренней памяти.
Через год Джордж Стибиц (Америка) изобрел электромеханическое средство для выполнения двоичных сложений. В основе лежала булевая алгебра. Она стала неотъемлемой частью современных ЭВМ.
Начало компьютерной эры
Развитие электрических устройств и человечества требовало от населения создания разнообразных технологий, облегчающих жизнь. Вторая Мировая Война стала крайне важным моментом в рассматриваемом вопросе.
Конрад Цузе (Германия) в 1941 году создал первую вычислительную машину, которая управлялась программами. Она называется Z3. Основана на:
Машина работала в двоичной системе, а также оперировала числами с плавающей запятой. Но первое поколение компьютеров начинается с усовершенствованного устройства Цузе – Z4.
В 1942 году американцы создали ЭВМ на вакуумных трубках, а через год в Англии построили первую секретную и реально признанную электронно-вычислительную машину под названием «Колосс». Там было 2 000 электронных ламп для хранения и обработки данных.
Изначально «девайс» предназначался для взлома и расшифровки кодов секретных сообщений, которые передавались по немецким шифровальным машинам «Энигма». Уинстон Черчилль после войны подписал указ об уничтожении соответствующего устройства.
Появление архитектуры
В 1945 году Джон фон Нейман смог сделать прообраз архитектуры общего назначения, которая используется в основе современных компьютеров. Математик предложил записывать программы в виде кодов непосредственно в память машин. Предусматривалось совместное хранение утилит и данных на «девайсе».
Эта теория стала основой ENIAC. Так назывался первый компьютер, созданный в США. Имел он весьма внушительные параметры:
За секунду такой компьютер производил до 300 операций умножения или 5 000 сложения.
Универсальная программируемая европейская ЭВМ появилась в 1950 году в СССР. Малая электронная счета машина изобретена Сергеем Лебедевым. Быстродействие ограничивалось 50 операциями в секунду. Использовал «девайс» около 6 000 электровакуумных ламп.
В 1952 возникла электронная счетная машина БЭСМ. Тоже разработана под предводительством Лебедева. Выполняло устройство до 10 000 операций. Ввод данных производился через перфоленты и фотопечати.
Чуть позже началось создание больших ЭВМ «Стрела» и «Урал». Последние разработки устройств аппаратно и программно совместимы друг с другом. Для них имелся широкий спектр периферических устройств, благодаря чему удавалось менять комплектацию «девайса».
Лампы, которые использовали первые компьютеры, быстро выходили из строя. Транзисторы, изобретенные в 1947, решили соответствующую проблему. Через электрические свойства проводников удавалось выполнять математические вычисления, но быстрее и с меньшим потреблением энергии.
Транзисторы массово производятся американской компанией «Техас Инструментс». В 1946 в Массачусетсе возник первый построенных на транзисторах компьютер второго поколения – TX-O.
Использование ЭВМ началось не только в военных целях, но и в государственных. Различные фирмы и компании применяли такие компьютеры для подсчетов. Это привело к созданию новых технологий. Пример – разработка высокоуровневых языков программирования. К ним относят:
Были разработаны приложения-трансляторы, при помощи которых коды с перечисленных языков преобразовывались в команды, считываемые задействованным компьютером.
Интегральные микросхемы
В 1958-60-х Роберт Нойс и Джек Килби выпустили в свет интегральные микросхемы. В основе находились кремниевые или геманиевые кристаллы. Микросхемы достигали в размерах не более сантиметра и работали быстрее «предшественников». Использовали меньше энергии. Это – шаг к появлению третьего поколения компьютеров.
В 1964 фирма IBM создала первый компьютер семейства SYSTEM 360. В основе него лежали интегральные микросхемы. Так началось массовое производство компьютеров. Мир увидел более 20 тысяч экземпляров SYSTEM 360.
В 1972 СССР разработали единую серию компьютеров. Это – стандартизированные комплексы для работы вычислительных центров с общей системой команд. В основе лежит американская система IBM 360.
Далее компания DEC предложила вниманию мини-компьютер PDP-8. Это – первый коммерческий проект соответствующей области. Небольшая стоимость позволила приобретать девайс даже небольшим корпорациям.
В это же время начали развиваться операционные системы, а также периферийные устройства. Языки программирования тоже получили более широкое распространение и развитие.
Персональные компьютеры в мире
Четвертым поколением компьютеров считают девайсы, созданные после 1970. Тогда возникли интегральные микросхемы. С ними компьютеры обладали такими характеристиками и особенностями:
Стив Джобс и компания Apple – первые производители персональных компьютеров. Сконструированы такие девайсы в 1976. Назывались Apple 1. Стоили по 500 долларов. В 1977 в свет вышло поколение Apple 2.
Компьютеры начали походить на бытовые приборы: получили не только широкое распространение, но и оригинальные дизайн с интерфейсов, которым было удобно пользоваться рядовому юзеру.
В 1979 IBM выпустила свой первый компьютер на рынок товаров и услуг. А в 1981 появился первый микрокомпьютер. Он имел:
В 1984 Apple разработала машину Macintosh, обладающую удобным пользовательским интерфейсом.
Пятое поколение
Начинается примерно с 1992 года. Концепция получила формулировку: вычислительные машины, созданные при помощи сверхсложных микропроцессоров. У них параллельно-векторная структура, позволяющая одновременно выполнять десятки последовательных команд, заложенных в программное обеспечение.
У таких машин несколько сотен процессоров с параллельной работой. Помогают создавать эффективно функционирующие сети и очень быстро производить обработку данных.
Нынешнее время
Примерно с 2013 года началось стремительное развитие машин вычислительного типа шестого поколения. Представлены электронными и оптоэлектронными ЭВМ с работой на основе десятков тысяч микропроцессоров. Они наделены параллелизмом. Способны моделировать архитектуру нейронных биологических систем, благодаря чему возможно успешное распознавание сложных образов.
Сейчас для «крупных» операций в качестве решений используют суперкомпьютеры. Они не предназначаются для стационарного «домашнего» применения. Обладают множеством функций и огромной мощностью. Основная сфера применения – Big Data.
Технологии и IT стремительно развиваются. Неизвестно, какие еще идеи будут реализованы в ближайшее время. Но в эру цифровых технологий разработчики стараются внедрять в свои машины искусственный интеллект.
Тенденции показывают то, что фирмы-производители стараются по сей день совершенствовать рассматриваемые «девайсы». Настоящее время демонстрирует следующее — они больше ориентированы на «рядового пользователя». Наделяются не только красивым интерфейсом, но и обладают неплохими мощностями.
Также вам может быть интересна статья «Компьютер – как все начиналось».
P. S. Интересуют компьютеры и сфера информационных технологий? Обратите внимание на профессиональные курсы Otus!
Первая электронная вычислительная машина с двоичной системой счисления. Забытый проект ABC
До 70 годов считалось, что первый электронный цифровой компьютер (ENIAC) был создан Джоном Мокли и Джоном П. Эккертом еще в далеких 40 годах. В 1973 году завершился судебный процесс между корпорацией Sperry Rand и компанией Honeywell за авторство изобретения электронной вычислительной машины. Корпорацией Sperry был приобретен патент на ENIAC и после этого компания взыскивала процент от других компаний, которые занимались разработкой ЭВМ. Honeywell платить не захотели, после чего корпорация Sperry подала на них в суд, но не тут то было: им был предьявлен встречный иск. Обвинялась Sperry в том, что использовала недействительный патент и этим самым нарушала антитрестовский закон. Представители компании Honeywell привели как довод созданную до ENIAC конструкцию ЭВМ Атанасова. Атанасов был разыскан, что самое интересное, он не был хорошо знаком с устройством ENIAC. Конструктивные особенности его компьютера ABC были использованы в ЭВМ ENIAC. Джон В. Атанасов — ученый из Айовы, еще в 30 годах создал первую электронную вычислительную машину, которая работала на основе двоичной системы счисления.
4 октября 1903 года Джон Винсент Атанасов родился в нескольких милях к западу от Гамильтона, штат Нью-Йорк, на ферме, принадлежавшей его деду, в семье эмигрантов из Болгарии. Он был первым ребенком в семье Джона (Ивана) Атанасова (1876-1956) и Ив Лаусен Парди (1881-1983). Его отец был инженером, а мать — учительницей математики в школе. В семье было девять детей (один из них умер): Джон, Этелин, Маргарет, Теодор, Авис, Раймонд, Мельва и Ирвинг.
Джон писал о своих родителях:
«Мой отец родился 6 января в 1876 году, наш народ как раз готовился к восстанию против турок (апрельское антиосманское восстание в Болгарии, произошло 18 апреля — 23 мая 1876 года и было жестоко подавлено турками, оно считается кульминацией болгарского национально освободительного движения против османского гнета, в ходе восстания погибло от 25 до 50 тысяч болгар). Людям, проживавшим в нашем поселке было предложено покинуть свои дома вместе с семьями, после чего дома были сожжены. Моя бабушка бежала с ребенком (моим отцом) на руках за дедушкой… прозвучал выстрел… один из турецких солдат выстрелил моему дедушке прямо в грудь, он упал замертво, рикошетом пуля задела моего отца и на всю жизнь оставила шрам, как ужасное напоминание о тех событиях. Бабушка вышла второй раз замуж. В 15 лет мой отец прибыл в США, в 15 лет он остался сиротой. Здесь он закончил Университет Колгейт (американский гуманитарный колледж в г. Хамильтоне, округ Мэдисон штата Нью-Йорк). Позже женился на моей матери-американке, дед по линии матери принимал участие в гражданской войне между Севером и Югом».
с матерью
Происшествие, случившееся в то время, является задокументированным фактом в истории болгарского народа (так называемая Резня в Бояджик). 11 мая 1876 года турецкая армия напала и разграбила деревню Бояджик, убив почти две сотни невооруженных людей, в основном женщин и детей. Только лишь чудо уберегло отца Атанасова от верной гибели.
Иван Атанасов прибыл в США со своим дядей в 1889 году, имя Иван было изменено иммиграционной службой на — Джон. После окончания колгейтского университета в 1890 году родители Атанасова поженились и переехали в Нью-Джерси, где отец получил работу инженера. Отец продолжил свою учебу в вечернее и ночное время, посещал курсы, увлекался электротехникой и электроникой. После рождения Джона семья переехала во Флориду, где отец получил работу в новом городке Brewster инженером на электростанции, на данный момент это город-призрак.
городок Brewster
Джон закончил здесь начальную школу, уже в то время его интересовало все, что было связано с электричеством) В 9 лет он обнаружил неисправность в электропроводке на заднем крыльце дома и смог починить ее. К слову, его отец был первым в округе, кто провел электрическую проводку в своем доме. Джон был развит не по годам, рано научился читать и любил все, что мог узнать из книг. Учился он хорошо, был прилежным учеником, интересовался спортом, особенно был увлечен бейсболом. Но увлечение бейсболом растаяло как туман, после того как отец подарил ему логарифмическая линейку, считается, что до появления карманных калькуляторов этот инструмент был просто незаменим для инженеров при расчетах.
«Эта логарифмическая линейка была моей самой любимой игрушкой, бейсбол был почти забыт, когда я приступил к серьезному изучению логарифмов». В 10 лет он изучал физику и химию, занимался математикой, как-то его мать дала ему книгу, в которой шла речь о вычислениях в других системах счисления, отличных о десятичной.
Еще во время учебы в школе, Атанасов освоил дифференциальное исчисление, а отец взял его как-то на завод и показал работу генератора. Это все определило его дальнейший выбор. Когда мальчику нужно было переходить в старшие классы, семья переехала на ферму в Old Chicora, Флорида. За два года в возрасте 15 лет Атанасов окончил Mulberry High School с отличием по математическим дисциплинам. Он решил, что быть физиком-теоретиком его призвание. Но ему пришлось год проработать в фосфатных шахтах, чтобы заработать денег. В 1921 году Джон поступил в университет во Флориде на электротехнический факультет.
Много времени Атанасов проводил в механических и литейных мастерских университета. Он закончил университет в 1925 году со степенью бакалавра с наилучшими баллами и получил стипендию на обучение в магистратуре по математике и физике от штата Айова. Ему предлагали обучение многие высшие заведения, такие как Гарвард, но он решил все же продолжить обучение в Эймсе.
Летом 1925 года Джон закончил обучение в Айове и получил диплом инженера — электрика, тут же занимался преподавательской деятельностью и вел два математических класса. В 1926 году Джон женился на молодой голубоглазой брюнетке Луре Микс из Оклахомы. Через год у них родилась дочь Эльзи и семья переехала в Висконсин, где Атанасов (май 1930 год) защитил свою докторскую диссертацию. Двое других детей, двойнята Джоан и Джон, родились через год.
В марте 1929 года он стал аспирантом Университета в штате Висконсин и продолжил свою учебу в области теоретической физики. Работая над своей докторской диссертацией, Атанасову приходилось делать много вычислений, его тема была о гелии поляризующемся в электрическом поле, он часами проводил расчеты с помощью калькулятора Монро, одним из самых современных вычислительных устройств того времени. В то время аналоговые методы решения с помощью дифференциального анализатора Ванневара-Буша не могли уже удовлетворять запросы из-за допускаемых неточностей, а устройств, которые реализовали бы цифровой подход, просто — напросто не существовало. И вот, в такие моменты Атанасов понимал, что пришло время разработать что-то, что сможет помочь делать расчеты намного быстрее, точнее, его не покидала мысль о автоматизации решения больших линейных алгебраических уравнений. Атанасов даже попытался модифицировать калькулятор фирмы IBM.
Поэтому после возвращении в Государственный колледж штата Айова, где он работал ассистентом профессора по математике и физике, он всерьез занялся разработкой и созданием быстродействующей вычислительной машины. Он проводил эксперименты с вакуумными трубками, радио, изучал электронику. Атанасов изучил многие доступные на то время вычислительные устройства, и пришел к выводу, что их можно разделить на два класса аналоговые устройства и вычислительные машины (но термин «цифровая вычислительная машина» начал использовался позже). В 1936 году Атанасов попытался создать небольшой аналоговый калькулятор. В Айове никто кроме Джона не занимался созданием новых вычислительных машин, здесь он спокойно обдумывал свои идеи, но с другой стороны и не было людей специалистов с которыми он мог бы обсудить на месте свои задумки, разобраться в возникших технических и теоретических проблемах. Такой себе одинокий изобретатель.
Джон Атанасов изначально думал создать аналоговое устройство, что-то похожее на его любимые логарифмические линейки, но очевидным стал тот факт, что длина таких линейных пленок для точного решения линейных алгебраических уравнений была бы сотни метров. Ограниченность аналоговых средств вычисления толкали ученого на создание чего-то «революционного». Как сохранить числа в машине — вот была первая задача, которую Атанасов попытался решить. Вот так возник термин «память» для описания данной функции в машине. Какие виды памяти только не перебрал Атанасов и механические штырьки, и электромагнитные реле, и электронные лампы. Так как электронные лампы на то время были дорогие, он решил использовать конденсаторы. Конденсаторы сами по себе небольшие и недорогие компоненты, которые могли на некоторое время сохранять электрический заряд, но вот о маленьких размерах машины и ее быстродействии с таким видом памяти можно было забыть.
Вторая задача, которую следовало решить он назвал «вычислительным механизмом». Для этого механизма Атанасов решил использовать электронные лампы, которые использовались бы в качестве двухпозиционных переключателей с функциями включить/выключить. На данном этапе и возникла дилемма, какую систему исчисления использовать в машине (даже система исчисления с основанием на сто показалась ученому многообещающей). В конце-концов была выбрана двоичная система счисления.
Еще была у Атанасова одна страсть — автомобили. Он старался каждый год покупать новый (вот не известно продавал ли предыдущие). Одним из зимних вечеров 1937 года в придорожной таверне, куда заехал Атанасов на новом форде c мощным двигателем V8, его посетила идея и то, по каким принципам должен быть создан новый вычислительный аппарат. Суть этих принципов была сформулирована им позже, а именно она состояла в том, что для работы компьютера будет использоваться электричество, и основана она будет не на привычной десятичной системе счисления, а на двоичной.
«… однажды зимним вечером 1937 года я почувствовал, что совершенно измучен невозможностью найти решение проблем, связанных с конструкцией машины. Я сел в автомобиль, разогнался и ехал так долгое время, пока не стал контролировать свои эмоции. Это было моей привычкой — у меня получалось восстанавливать контроль над собой, после того как проедусь по дороге, сосредоточившись на управлении автомобилем. Но в ту ночь я был слишком измучен и продолжал мчаться, пока не пересек реку Миссисипи и не оказался в штате Иллинойс, в 300 километрах от того места, где сел в машину. (зашел в таверну и заказал выпивку) я почувствовал, что уже не так нервничаю, и мои мысли снова обратились к вычислительным машинам. Я не знаю, почему моя голова тогда заработала и почему она не работала раньше, но там было симпатично, прохладно и тихо».
Принципы работы будущей вычислительной машины Атанасов набросал на салфетке, он думал о том, какой будет конструкция регенеративной памяти, назвал ее «дискретной», он придумал поместить конденсаторы на вращающиеся цилиндрические барабаны (из под банок сока), каждую секунду они бы вступали в контакт со щетками (в виде кабелей) и заряжались бы. Память, состоящая из конденсаторов, «встряхивалась» бы щетками при повороте вращающихся цилиндров, а при необходимости снимались бы старые данные и вводились новые. Придуманная логическая электронная схема позволяла считывать числа с двух разных цилиндров с конденсаторами.
Началась работа над создание прототипа. Нужен был помощник, так в 1939 году произошло знакомство Атанасова с Берри, который на тот момент был выпускником электротехнического отделения, хорошо разбирался в электронике.
Работа над ABC (Atanasoff— Berry Computer) длилась три года, а первый прототип был продемонстрирован еще в 1939 году и его целью было решение системы линейных уравнений, система могла работать с 29 переменными, она обрабатывала два уравнения и убирала одну из переменных, а получившиеся уравнение выводила на двоичные перфокарты размеров 8Х11, после этого карты с более простой системой уравнений подавались обратно в машину, процесс начинался заново. Все это сокращало бы такие расчеты с 29 переменными. На калькуляторе это заняло бы 10 недель, а на вычислительной машине всего 7! дней. Но все равно это был бы очень длительный процесс.
В ABC использовалась двоичная арифметика. Длина слова составляла 50 бит. Перфокарты с промежуточными результатами содержали тридцать 50-разрядных двоичных чисел. В машине было два запоминающихся устройства, которые состояли из вращающихся барабанов, к которым были прикреплены небольшие конденсаторы, подключенные к латунному контакту на поверхности барабана.
5/6 периферийной поверхности барабана было занято латунными контактами, а 1/6 оставалась пустой, что предоставляло время для выполнения других операций. Скорость прохождения контактов мимо считывающей щетки составляла 60 в секунду.
По словам Берри:
«… полярность заряда на конденсаторе указывала “единицу” или “ноль”, и каждый конденсатор сразу же после считывания перезаряжался, чтобы заряд никогда не оставался на нем более одной секунды. Все слова обрабатывались параллельно, но внутри каждого слова цифры обрабатывались последовательно. Интересно отметить, что прежде чем проектировать память на конденсаторах, мы серьезно рассматривали идею использования магнитных барабанов, но отказались от нее из-за низкого уровня сигналов. Имелось 30 идентичных арифметических устройств, которые по существу были двоичными сумматорами. Каждое состояло из серии электровакуумных ламп с прямой связью (семь сдвоенных триодов), соединенных между собой таким образом, что они выполняли двоичное сложение. Каждое устройство имело три входа (два — для складываемых или вычитаемых чисел и один — для переноса с предыдущего места) и два выхода (один — для результата на том месте, а другой — для переноса на другое место)».
Преобразование десятичных чисел в двоичные осуществлялось с помощью вращающегося барабана, на котором находились контакты, представляющие двоичные эквиваленты 1,2 — 9,10,20 — 9х14. На выходе тот же аппарат в обратном порядке преобразовывал и выдавал на механический счетчик десятичный результат.
Атанасов напечатал на 35 страницах описание такой машины в надежде получить финансирование данного проекта. Сумма расходов составила чуть больше 5 тысяч долларов, но финансирование он позже получил от частного фонда. Адвокат, который был нанят Айовским университетом, по каким-то причинам не подал заявку на патент.
В 1940 году Атанасов и Берри пригласили Мокли (физик из колледжа Урсинуса) в Айову «на помощь», после того как Атанасов прослушал его лекцию о «возможности использования аналоговых компьютеров для решения проблем метеорологии» в Пенсильвании. В 1941 году Мокли посетил дом Атанасова и они втроем 5 дней общались на тему цифровой вычислительной машины ABC, но материалы Атанасов попросил оставить все же в секрете. Так состоялась эта судьбоносная встреча Атанасова и Мокли.
Мокли
Мокли прибыл вечером в пятницу 13 июня из Вашингтона. Атанасов был готов показать свою частично собранную машину, не смотря на предупреждения жены о том, что Мокли ей показался не совсем честным человеком, а ABC не была еще запатентована. Мокли впечатлили пару вещей — идея использования конденсаторов в блоке памяти и метод пополнять их заряд раз в секунду, поместив их на вращающийся цилиндр.
Вот, что вспоминал Мокли о этой встрече и увиденной машине Атанасова — Берри:
«Я думал, что его машина гораздо хитроумнее, но так как она оказалась частично механической, в том числе в ней использовались вращающиеся коммутирующие переключатели, она никоим образом не была похожа на то, что я имел ввиду. Я больше не интересовался подробностями. Полумеханический характер машины Атанасова вызвал у меня довольно сильное разочарование. У него не было в планах ничего, что могло бы сделать машину более универсальной и позволило бы ей решать какие-либо другие задачи, кроме решения системы линейных уравнений».
«Поэтому, когда началось судебное разбирательство за первенство среди электронных вычислительных машин, в своих свидетельствах Мокли сказал, что данный визит для него значил не больше, чем посещение выставки, на которой он просто почерпнул кое-какие идеи». Главным отличием Мокли от Атанасова было его желание и умение работать в коллективе. В результате Мокли и его талантливая команда вошли в историю как изобретатели первого электронного компьютера. Да и потом, как утверждал Мокли это были его идеи, которые были дополнены идеями, опытом других талантливых ученых, во время беседы с ними, при посещении разных выставок. После посещения Атанасова, Мокли был приглашен пройти курс электроники в университете Пенсильвании. Все это сподвигло его на создание компьютера и уже к осени 1941 года Мокли доделал свою версию компьютера. Здесь уже начинается история ENIAK. Первым полностью электронный цифровой компьютер, который собирали при строгой секретности для военных целей в университете Пенсильвании.
Вернемся к Атанасову и его машине.
И так уже через три года к 1942 году машина была почти готова. Размер такой вычислительной машины был с письменный стол и насчитывала такая машина 300 электронных ламп. Проблемой был механизм для прожигания отверстий в перфокартах с помощью искры (он срабатывал через раз).
Пришел 1942 год, военные годы заставили отложить работу Атанасова над проектом ABC. Он был призван на службу на флот и был назначен главой Отдела акустики при Военно-морской Артиллерийской лаборатории (NOL) в Вашингтоне, штат Колумбия. Его зарплата составила 10 тысяч долларов и работал он тут над проблемой акустических мин, участвовал в испытании атомной бомбы на атолле Бикини. В это время вычислительная машина Атанасова пылилась в подвале в университете Айовы, была разобрана каким-то аспирантом, так как занимала много места. О ней было позабыто. Ни Атанасов, ни Берри не были уведомлены о том, что их детище было разобрано и только лишь третья его часть сохранилась.
В 1949 году Атанасов развелся со своей первой женой. Лура переехала с детьми в Денвер. В том же году Джон женился во второй раз на Алисе Гросби.
Даже если бы о АВС вспомнили, у данной машины были ограничения: процесс замедлялся за счет механически поворачивающихся ячеек памяти да и система прожигания отверстий в перфокарте тормозила работу такого компьютера. Для того, чтобы ускорить быстродействие такой вычислительной машины нужно было сделать ее полностью электронной и программируемой.
В 1945 году Артиллерийское ведомство обратилось к Джону Атанасову с запросом помочь в конструировании компьютера для Военно-морской Артиллерийской лаборатории. Атанасов отказался от проекта, аргументируя это тем, что он не сможет одновременно работать над компьютерным проектом и заканчивать работу в Отделе акустики NOL.
После окончания войны Атанасов вернулся к компьютерам. Он сожалел о том, что закинул работу над созданием компьютера, так как его работа была поистине революционной. До 1949 года он был главой отдела акустики NOL. В 1950-1951 году он был директором программы взрывов при NOL.
В 1952 году Джон Атанасов открыл фирму «Артиллерийская инженерная корпорация» в городе Фредерик, штат Мериленд, позже Атанасов работал консультантом по автоматизации в упаковочной фирме.
В один прекрасный день в 1954 году к Атанасову пришел адвокат фирмы IBM, с предложение доказать то, что именно он — Атанасов был первым, кто создал электронный компьютер, а проект ENIAC просто напросто был заимствован у проекта ABC. Атанасов решил побороться за первенство своего проекта.
«… Атанасов все более убеждался, что ENIAC была заимствована от его ABC и что стоит продолжать это дело. Более того, ему придавало силы признание его заслуг в других странах, в частности на родине его предков — Болгарии, которая в 1970 году наградила его орденом Кирилла и Мефодия I степени».
Приговор судьи звучал так:
«Эккерт и Мокли, — читал судья Ларсон, — не сами изобрели этот автоматический электронный цифровой компьютер, но вместо того позаимствовали эту идею у доктора Джона В. Атанасова, а поэтому патент ENIAC является недействительным».
Остаток жизни Джон Винсент Атанасов (после сердечного удара в 1975 году) провел на своей ферме около Монровил, штат Мериленд. Он умер 15 июня в 1995 году в возрасте 92 лет.
Хоть машина Атанасова и не была ни универсальной, ни программируемой, ни полностью электронной, ученый заслуживает считаться первопроходцем, тем, кто придумал первый частично электронный цифровой компьютер.